The Moreau envelope approach for the L1/TV image denoising model
Pages: 53  77,
Issue 1,
February
2014
doi:10.3934/ipi.2014.8.53 Abstract
References
Full text (648.3K)
Related Articles
Feishe Chen  Department of Mathematics, Syracuse University, Syracuse, NY 13244, United States (email)
Lixin Shen  Department of Mathematics, Syracuse University, Syracuse, NY 13244, United States (email)
Yuesheng Xu  Department of Mathematics, Syracuse University, Syracuse, NY 132441150, United States (email)
Xueying Zeng  School of Mathematical Sciences, Ocean University of China, Qingdao 266100, China (email)
1 
J. E. Aujol, G. Gilboa, T. Chan and S. Osher, Structuretexture image decompositionmodeling, algorithms, and parameter selection, International Journal of Computer Vision, 67 (2006), 111136. 

2 
H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Space, Springer Press, New York, 2011. 

3 
A. Beck and M. Teboulle, A fast iterative shrinkagethresholding algorithm for linear inverse problems, SIAM Journal on Imaging Science, 2 (2009), 183202. 

4 
P. Bloomfield and W. Steiger, Least Absolute Deviations: Theory, Applications, and Algorithms, Birkhäuser Boston, Boston, 1983. 

5 
A. Bovik, Handbook of Image and Video Processing, Academic Press, San Diego, 2000. 

6 
A. Chambolle, An algorithm for total variation minimization and applications, Special issue on mathematics and image analysis, Journal of Mathematical Imaging and Vision, 20 (2004), 8997. 

7 
A. Chambolle and T. Pock, A firstorder primaldual algorithm for convex problems with applications to imaging, Journal of Mathematical Imaging and Vision, 40 (2011), 120145. 

8 
T. Chan and S. Esedoglu, Aspects of total variation regularized l1 function approximation, SIAM Journal on Applied Mathematics, 65 (2005), 18171837. 

9 
R. Chartrand and V. Staneva, Total variation regularization of images corrupted by nongaussian noise using a quasinewton method, IET Image Processing, 2 (2008), 295303. 

10 
T. Chen, W. Yin, X. Zhou, D. Comaniciu and T. Huang, Total variation models for variable lighting face recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, 28 (2006), 15191524. 

11 
C. Clason, B. Jin and K. Kunisch, A dualitybased splitting method for l1tv image restoration with automatic regularization parameter choice, SIAM Journal on Scientific Computing, 32 (2010), 14841505. 

12 
P. Combettes and V. Wajs, Signal recovery by proximal forwardbackward splitting, Multiscale Model and Simulation, 4 (2005), 11681200. 

13 
Y. Dong, M. Hintermuller and M. Neri, An Efficient PrimalDual Method for $l^1$TV image Restoration, SIAM Journal on Imaging Sciences, 2 (2009), 11681189. 

14 
T. Goldstein and S. Osher, The split bregman method for l1regularized problems, SIAM Journal on Imaging Science, 2 (2009), 323343. 

15 
Y. Gousseau and J.M. Morel, Are natural images of bounded variation?, SIAM Journal on Mathematical Analysis, 33 (2001), 634648. 

16 
X. Guo, F. Li and M. Ng, A fast $l^1$TV algorithm for image restoration, SIAM Journal of Scientific Computing, 31 (2009), 23222341. 

17 
B. He and X. Yuan, Convergence analysis of primaldual algorithms for a saddlepoint problem: from contraction perspective, SIAM Journal on Imaging Sciences, 5 (2012), 119149. 

18 
Q. Li, C. Micchelli, L. Shen and Y. Xu, A proximity algorithm accelerated by GaussSeidel iterations for L1/TV denoising models, Inverse Problems, 28 (2012), 20 pp. 

19 
C. A. Micchelli, L. Shen and Y. Xu, Proximity algorithms for image models: Denosing, Inverse Problems, 27 (2011), 30pp. 

20 
C. A. Micchelli, L. Shen, Y. Xu and X. Zeng, Proximity algorithms for the $l_1$$/$$tv$ image denosing models, Advances in Computational Mathematics, 38 (2013), 401426. 

21 
J.J. Moreau, Fonctions convexes duales et points proximaux dans un espace hilbertien, C. R. Acad. Sci. Paris Sér. A Math., 255 (1962), 18972899. 

22 
M. Nikolova, A variational approach to remove outliers and impulse noise, Journal of Mathematical Imaging and Vision, 20 (2004), 99120. 

23 
R. Rockafellar, Augmented lagrangians and applications of the proximal point algorithm in convex programming, Mathematics of Operations Research, 8 (1976), 421439. 

24 
R. T. Rockafellar and R. Wets, Variational Analysis, Springer, 1998. 

25 
C. Wu, J. Zhang and X. Tai, Augmented lagrangian method for total variation restoration with nonquadratic fidelity, Inverse Problems and Imaging, 5 (2011), 237261. 

26 
J. Yang, Y. Zhang and W. Yin, An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise, SIAM Journal on Scientific Computing, 31 (2009), 28422865. 

27 
W. Yin, T. Chen, S. Zhou and A. Chakraborty, Background correction for cdna microarray images using the tv+l1 model, Bioinformatics, 21 (2005), 24102416. 

28 
W. Yin, D. Goldfard and S. Osher, The total variation l1 model for multiscale decomposition, Multiscale Modelling and Simulation, 6 (2007), 190211. 

29 
C. Zach, T. Pock and H. Bischof, A duality based approach for realtime tvl1 optical flow, Pattern Recognition, 4713 (2007), 214223. 

Go to top
