`a`
Inverse Problems and Imaging (IPI)
 

The "exterior approach" to solve the inverse obstacle problem for the Stokes system
Pages: 23 - 51, Issue 1, February 2014

doi:10.3934/ipi.2014.8.23      Abstract        References        Full text (1474.3K)           Related Articles

Laurent Bourgeois - Laboratoire POEMS, ENSTA ParisTech, 828, Boulevard des Maréchaux, 91762, Palaiseau Cedex, France (email)
Jérémi Dardé - Institut de Mathématiques, Université de Toulouse, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France (email)

1 C. Fabre and G. Lebeau, Prolongement unique des solutions de Stokes, Commun. Partial Differ. Eq., 21 (1996), 573-596.       
2 C.-L. Lin, G. Uhlmann and J.-N. Wang, Optimal three-ball inequalities and quantitative uniqueness for the Stokes system, Discrete Contin. Dyn. Syst., 28 (2010), 1273-1290.       
3 M. Boulakia, A.-C. Egloffe and C. Grandmont, Stability estimates for a Robin coefficient in the two-dimensional Stokes system, Mathematical Control and Related Fields, 3 (2013), 21-49.       
4 A. L. Bukhgeim, Extension of solutions of elliptic equations from discrete sets, J. Inverse Ill-Posed Probl., 1 (1993), 17-32.       
5 J. Cheng, M. Choulli and J. Lin, Stable determination of a boundary coefficient in an elliptic equation, Math. Models Methods Appl. Sci., 18 (2008), 107-123.       
6 A. Ben Abda, I. Ben Saad and M. Hassine, Data completion for the Stokes system, CRAS Mécanique, 337 (2009), 703-708.
7 C. Alvarez, C. Conca, L. Fritz and O. Kavian, Identification of immersed obstacles via boundary measurements, Inverse Problems, 21 (2005), 1531-1552.       
8 A. Ballerini, Stable determination of an immersed body in a stationary Stokes fluid, Inverse Problems, 26 (2010), 125015.       
9 N. F. M. Martins and A. L. Silvestre, An iterative MFS approach for the detection of immersed obstacles, Engineering Analysis with Boundary Elements, 32 (2008), 517-524.
10 C. Alvarez, C. Conca, R. Lecaros and J. H. Ortega, On the identification of a rigid body immersed in a fluid: A numerical approach, Engineering Analysis with Boundary Elements, 32 (2008), 919-925.
11 M. Badra, F. Caubet and M. Dambrine, Detecting an obstacle immersed in a fluid by shape optimization methods, Math. Models Methods Appl. Sci., 21 (2011), 2069-2101.       
12 F. Caubet, M. Dambrine, D. Kateb and C. D. Timimoun, A Kohn-Vogelius formulation to detect an obstacle immersed in a fluid, Inverse Problems and Imaging, 7 (2013), 123-157.       
13 A. Ben Abda, M. Hassine, M. Jaoua and M. Masmoudi, Topological sensitivity analysis for the location of small cavities in Stokes flow, SIAM J. Control and Optimization, 48 (2009), 2871-2900.       
14 F. Caubet and M. Dambrine, Localization of small obstacles in Stokes flow, Inverse Problems, 28 (2012), 105007.       
15 L. Bourgeois and J. Dardé, A quasi-reversibility approach to solve the inverse obstacle problem, Inverse Problems and Imaging, 4 (2010), 351-377.       
16 J. Dardé, The exterior approach: A new framework to solve inverse obstacle problems, Inverse Problems, 28 (2012), 015008.       
17 C. Conca, P. Cumsille, J. Ortega and L. Rosier, On the detection of a moving obstacle in an ideal fluid by a boundary measurement, Inverse Problems, 24 (2008), 045001.       
18 C. Conca, M. Malik and A. Munnier, Detection of a moving rigid solid in a perfect fluid, Inverse Problems, 26 (2010), 095010.       
19 C. Conca, E. Schwindt and T. Takahashi, On the identifiability of a rigid body moving in a stationary viscous fluid, Inverse Problems, 28 (2012), 015005.       
20 L. Bourgeois and J. Dardé, About identification of defects in an elastic-plastic medium from boundary measurements in the antiplane case, Applicable Analysis, 90 (2011), 1481-1497.       
21 H. Brezis, Analyse Fonctionnelle, Théorie et Applications, Dunod, Paris, 1983.       
22 R. Lattès and J.-L. Lions, Méthode de Quasi-Réversibilité et Applications, Dunod, Paris, 1967.       
23 M. V. Klibanov and F. Santosa, A computational quasi-reversibility method for cauchy problems for Laplace's equation, SIAM J. Appl. Math., 51 (1991), 1653-1675.       
24 P.-G. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, 1978.       
25 W. Ming and J. Xu, The Morley element for fourth order elliptic equations in any dimensions, Numerische Mathematik, 103 (2006), 155-169.       
26 G. Duvaut and J.-L. Lions, Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972.       
27 L. Bourgeois, A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace's equation, Inverse Problems, 21 (2005), 1087-1104.       
28 J. Dardé, A. Hannukaiinen and N. Hyvönen, An $H_{ d i v}$-based mixed quasi-reversibility method for solving elliptic Cauchy problems, SIAM J. Num. Anal., 51 (2013), 2123-2148.
29 L. Bourgeois and J. Dardé, A duality-based method of quasi-reversibility to solve the Cauchy problem in the presence of noisy data, Inverse Problems, 26 (2010), 095016.       
30 I. Ekeland and R. Temam, Analyse Convexe et Problèmes Variationnels, Dunod, 1974.       
31 S. Osher and J. A. Sethian, Front propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comp. Phys., 79 (1988), 12-49.       
32 A. Henrot and M. Pierre, Variation et Optimisation de Formes, Une Analyse Géométrique, Springer, Paris, 2005.       
33 F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer, New-York, 1991.       
34 F. Hecht, A. Le Hyaric, J. Morice, K. Ohtsuka and O. Pironneau, Freefem++ Manual, http://www.freefem.org/ff++/ftp/freefem++doc.pdf, 2012.
35 V. Girault and P.-A. Raviart, Finite Element Approximation of the Navier-Stokes Equations, Springer-Verlag, Berlin, 1979.       

Go to top