`a`
Evolution Equations and Control Theory (EECT)
 

Existence and asymptotic behaviour for solutions of dynamical equilibrium systems
Pages: 1 - 14, Issue 1, March 2014

doi:10.3934/eect.2014.3.1      Abstract        References        Full text (394.9K)           Related Articles

Zaki Chbani - Laboratory LIBMA Mathematics, Faculty of Sciences Semlalia, Cadi Ayyad University, 40000 Marrakech, Morocco (email)
Hassan Riahi - Laboratory LIBMA Mathematics, Faculty of Sciences Semlalia, Cadi Ayyad University, 40000 Marrakech, Morocco (email)

1 M. Ait Mansour, Z. Chbani and H. Riahi, Recession bifunction and solvability of noncoercive equilibrium problems, Comm. Appl. Anal., 7 (2003), 369-377.       
2 H. Attouch and A. Damlamian, Strong solutions for parabolic variational inequalities, Nonlinear Anal., 2 (1978), 329-353.       
3 J.-B. Baillon, Un exemple concernant le comportement asymptotique de la solution du problème ${du}/{dt} +\partial\varphi(u) = 0$, J. Funct. Anal., 28 (1978), 369-376.       
4 J. B. Baillon and H. Brézis, Une remarque sur le comportement asymptotique des semi-groupes non linéaires, Houston J. Math., 2 (1976), 5-7.       
5 V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer, 2010.       
6 E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63 (1994), 123-145.       
7 H. Brézis, Equations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier, 18 (1968), 115-175.       
8 H. Brézis, Inéquations variationnelles associées des opérateurs d'évolution, in Theory and applications of monotone operators, Proc. NATO Institute, Venice, (1968), 249-258.
9 H. Brézis, Opérateurs Maximaux Monotones Dans Les Espaces de Hilbert et Équations D'évolution, Lecture Notes, vol. 5, North-Holland, 1972.
10 H. Brézis, Analyse Fonctionnelle: Théorie et Applications, Masson, Paris, 1983.       
11 H. Brézis, Asymptotic behavior of some evolution systems, Nonlinear Evolution Equations, Academic Press, New York, 40 (1978), 141-154.       
12 F. Browder, Non-linear equations of evolution, Annals of Mathematics, Second Series, 80 (1964), 485-523.       
13 F. Browder, Nonlinear Operators and Nonlinear Equations of Evolution in Banach Spaces, Nonlinear Functional Analysis, Symposia in Pure Math., 18, Part 2, F. Browder (Ed.), American Mathematical Society, Providence, RI, 1976.       
14 R. E. Bruck, Asymptotic convergence of nonlinear contraction semigroups in Hilbert spaces, J. Funct. Anal., 18 (1975), 15-26.       
15 O. Chadli, Z. Chbani and H. Riahi, Recession methods for equilibrium problems and applications to variational and hemivariational inequalities, Discrete Contin. Dyn. Syst., 5 (1999), 185-196.       
16 O. Chadli, Z. Chbani and H. Riahi, Equilibrium problems with generalized monotone bifunctions and Applications to Variational inequalities, J. Optim. Theory Appl., 105 (2000), 299-323.       
17 Z. Chbani and H. Riahi, Variational principle for monotone and maximal bifunctions, Serdica Math. J., 29 (2003), 159-166.       
18 P. L. Combettes and A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6 (2005), 117-136.       
19 S. Effati and M. Baymani, A new nonlinear neural network for solving convex nonlinear programming problems, Applied Mathematics and Computation, 168 (2005), 1370-1379.       
20 I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Dunod, 1974.
21 N. Hadjisavvas and H. Khatibzadeh, Maximal monotonicity of bifunctions, Optimization, 59 (2010), 147-160.       
22 A. Haraux, Nonlinear Evolution Equations-Global Behavior of Solutions, Lecture note in Mathematics, 841, Springer-Verlag, 1981.       
23 J. J. Hopfield and D. W. Tank, Neural computation of decisions in optimization problems, Biol. Cybern., 52 (1985), 141-152.       
24 F. Li, Delayed Lagrangian neural networks for solving convex programming problems, Neurocomputing, 73 (2010), 2266-2273.
25 U. Mosco, Implicit variational problems and quasivariational inequalities, Lecture Notes in Mathematics, 543 Springer, Berlin, (1976), 83-156.       
26 A. Moudafi, A recession notion for a class of monotone bivariate functions, Serdica Math. J., 26 (2000), 207-220.       
27 A. Moudafi, Proximal point algorithm extended to equilibrium problems, J. Nat. Geom., 15 (1999), 91-100.       
28 Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591-597.       
29 R. T. Rockafellar, Saddle-points and convex analysis, In Differential Games and Related Topics, (Kuhn, H.W., Szegö, G.P. eds.), North-Holland, (1971), 109-127.       
30 R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equation, Math. Surveys Monogr. 49, Amer. Math. Soc., 1997.       
31 Y. Xia and J. Wang, A recurrent neural network for solving nonlinear convex programs subject to linear constraints, IEEE Transactions on Neural Networks, 16 (2005), 379-386.
32 G. X. Z. Yuan, KKM Theory and Applications in Nonlinear Analysis, Marcel Dekker Inc, New-York, 1999.       
33 E. Zeidler, Nonlinear Functional Analysis and Its Applications, II B: Nonlinear Monotone Operators, Springer-Verlag, 1990.       
34 E. Zeidler, Nonlinear Functional Analysis and Its Applications, III: Variational Methods and Optimization, Springer-Verlag, 1985.       

Go to top