`a`
Discrete and Continuous Dynamical Systems - Series S (DCDS-S)
 

Oscillations in suspension bridges, vertical and torsional
Pages: 785 - 791, Issue 4, August 2014

doi:10.3934/dcdss.2014.7.785      Abstract        References        Full text (246.2K)           Related Articles

P. J. McKenna - Department of Mathematics, University of Connecticut, Storrs, CT 06269, United States (email)

1 Ahmad M. Abdel-Ghaffar, Suspension bridge vibration: Continuum formulation, Journal of Eng. Mech., 108 (1982), 1215-1232.
2 A. A. Abdel-Ghaffar and R. H. Scanlan, Ambient vibration studies of Golden Gate Bridge. Suspended structure, Jour. Eng. Mech., 11 (1985), 463-481.
3 N. U. Ahmed and H. Harbi, Mathematical analysis of dynamic models of suspension bridges, SIAM J. Appl. Math., 58 (1998), 853-874       
4 O. H. Ammann, T. von Karman and G. B. Woodruff, The Failure of the Tacoma Narrows Bridge, Federal Works Agency, 1941.
5 K. Y. Billah and R. H. Scanlan, Resonance, Tacoma Narrows bridge failure, and undergraduate physics textbooks, Am. Jour. Physics, 59 (1991), 118-124.
6 F. Bleich, C. B. McCullough, R. Rosecrans and G. S. Vincent, The Mathematical Theory of Suspension Bridges, U.S. Dept. of Commerce, Bureau of Public Roads, 1950.
7 A. Castellani,, Safety margins of suspension bridges under seismic conditions, J. Structural Eng., 113 (1987), 1600-1616.
8 Y. S. Choi, K. C. Jen and P. J. McKenna, The structure of the solution set for periodic oscillations in a suspension bridge model, IMA J. Appl. Math, 47 (1991), 283-306.       
9 M. Diaferio and V. Sepe, Smoothed "slack cable" models for large amplitude oscillations of suspension bridges, Mechanics Based Design of Structures and Machines, 32 (2004), 363-400.
10 P. Drábek, H. Leinfelder and G. Tajčová, Coupled string-beam equations as a model of suspension bridges, Appl. Math., 44 (1999), 97-142.       
11 P. Drábek and P. Nečesal, Nonlinear scalar model of a suspension bridge: existence of multiple periodic solutions, Nonlinearity, 16 (2003), 1165-1183.       
12 F. Gazzola and R. Pavani, Wide oscillation finite time blow up for solutions to nonlinear fourth order differential equations, Arch. Ration. Mech. Anal., 207 (2013), 717-752.       
13 J. Glover, A. C. Lazer and P. J. McKenna, Existence and stability of large-scale nonlinear oscillations in suspension bridges, Z.A.M.P., 40 (1989), 171-200.       
14 D. Green and W. G. Unruh, The failure of the Tacoma Bridge: A physical model, American J. Phys., 74 (2006), 706-716.       
15 A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev., 32 (1990), 537-578.       
16 A. Larsen, Aerodynamics of the Tacoma Narrows Bridge-60 years later, Structural Engineering International, 4 (2000), 243-248.
17 P. J. McKenna, Large torsional oscillations in suspension bridges revisited: Fixing an old approximation, Amer. Math. Monthly, 106 (1999), 1-18.       
18 P. J. McKenna and C. ÓTuama, Large torsional oscillations in suspension bridges visited again: Vertical forcing creates torsional response, Amer. Math. Monthly, 108 (2001), 738-745.       
19 P. J. McKenna, Large-amplitude periodic oscillations in simple and complex mechanical systems: outgrowths from nonlinear analysis, Milan J. Math, 74 (2006), 79-115.       
20 P. J. McKenna and W. Walter, Nonlinear oscillations in a suspension bridge, Arch. Rat. Mech. Anal., 98 (1987), 167-177.       
21 P. J. McKenna and W. Walter, Travelling waves in a suspension bridge, SIAM J. of Applied Math, 50 (1990), 703-715.       
22 K. S. Moore, Large torsional oscillations in a suspension bridge: Multiple periodic solutions to a nonlinear wave equation, SIAM J. Math. Anal., 33 (2002), 1411-1429.       
23 R. H. Scanlan, Developments in low-speed aeroelasticity in the civil engineering field, AIAA Journal, 20 (1982), 839-844.
24 R. H. Scanlan and J. J. Tomko, Air foil and bridge deck flutter derivatives, J. Eng. Mech. Division ASCE, 97 (1971), 1717-1737.
25 J. Turmo and J. E. Luco, Effect of hanger flexibility on dynamic response of suspension bridges, J. Eng. Mech., 136 (2010), 1444-1459.
26 Q. Wu, K. Takahashi and S. Nakamura, The effect of cable loosening on seismic response of a prestressed concrete cable-stayed bridge, J. of Sound and Vibration, 268 (2003), 71-84.
27 Q. Wu, K. Takahashi and S. Nakamura, Non-linear vibrations of cables considering loosening, J. of Sound and Vibration, 261 (2003), 385-402.

Go to top