Electronic Research Announcements in Mathematical Sciences (ERA-MS)

The spectral gap of graphs and Steklov eigenvalues on surfaces
Pages: 19 - 27, January 2014

doi:10.3934/era.2014.21.19      Abstract        References        Full text (364.6K)           Related Articles

Bruno Colbois - Université de Neuchâtel, Institut de Mathématiques, Rue Emile-Argand 11, Case postale 158, 2009 Neuchâtel, Switzerland (email)
Alexandre Girouard - Département de mathématiques et de statistique, Université Laval, Pavillon Alexandre- Vachon, 1045, av. de la Médecine, Quebec Qc G1V 0A6, Canada (email)

1 R. Bañuelos, T. Kulczycki, I. Polterovich and B. Siudeja, Eigenvalue inequalities for mixed Steklov problems, in Operator Theory and its Applications, Amer. Math. Soc. Transl. Ser. 2, 231, Amer. Math. Soc., Providence, RI, 2010, 19-34.       
2 R. Brooks, The first eigenvalue in a tower of coverings, Bull. Amer. Math. Soc. (N.S.), 13 (1985), 137-140.       
3 R. Brooks, The spectral geometry of a tower of coverings, J. Differential Geom., 23 (1986), 97-107.       
4 M. Burger, Estimation de petites valeurs propres du laplacien d'un revêtement de variétés riemanniennes compactes, C. R. Acad. Sci. Paris Sér. I Math., 302 (1986), 191-194.       
5 P. Buser, On the bipartition of graphs, Discrete Appl. Math., 9 (1984), 105-109.       
6 F. R. K. Chung, Spectral Graph Theory, CBMS Regional Conference Series in Mathematics, No. 92, American Mathematical Society, Providence, RI, 1997.       
7 B. Colbois, A. El Soufi and A. Girouard, Isoperimetric control of the Steklov spectrum, J. Funct. Anal., 261 (2011), 1384-1399.       
8 B. Colbois and A.-M. Matei, On the optimality of J. Cheeger and P. Buser inequalities, Differential Geom. Appl., 19 (2003), 281-293.       
9 A. Fraser and R. Schoen, Sharp eigenvalue bounds and minimal surfaces in the ball, arXiv:1209.3789, (2013).
10 A. Girouard and I. Polterovich, Upper bounds for Steklov eigenvalues on surfaces, Electron. Res. Announc. Math. Sci., 19 (2012), 77-85.       
11 S. Hoory, N. Linial and A. Wigderson, Expander graphs and their applications, Bull. Amer. Math. Soc. (N.S.), 43 (2006), 439-561 (electronic).       
12 M. Karpukhin, Large Steklov and Laplace eigenvalues, in preparation.
13 G. Kokarev, Variational aspects of Laplace eigenvalues on Riemannian surfaces, arXiv:1103.2448, (2011).
14 N. N. Moiseev, Introduction to the theory of oscillations of liquid-containing bodies, in Advances in Applied Mechanics, Vol. 8, Academic Press, New York, 1964, 233-289.       
15 M. S. Pinsker, On the complexity of a concentrator, in 7th International Teletraffic Conference, 1973, 318/1-318/4.
16 P. C. Yang and S. T. Yau, Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 7 (1980), 55-63.       

Go to top