Wellposedness and scattering for a system of quadratic derivative
nonlinear Schrödinger equations with low regularity initial data
Pages: 1563  1591,
Issue 4,
July
2014
doi:10.3934/cpaa.2014.13.1563 Abstract
References
Full text (564.0K)
Related Articles
Hiroyuki Hirayama  Graduate School of Mathematics, Nagoya University, Chikusaku, Nagoya, 4648602, Japan (email)
1 
I. Bejenaru, Quadratic nonlinear derivative Schrödinger equations. Part I, Int. Math. Res. Pap., 2006 (2006), 84pp. 

2 
I. Bejenaru, Quadratic nonlinear derivative Schrödinger equations. Part II, Trans. Amer. Math. Soc., 360 (2008), 59255957. 

3 
H. Chihara, Local existence for semilinear Schrödinger equations, Math. Japon., 42 (1995), 3551. 

4 
H. Chihara, Gain of regularity for semilinear Schrödinger equations, Math. Ann., 315 (1999), 529567. 

5 
M. Christ, Illposedness of a Schrödinger equation with derivative nonlinearity, preprint, Available from: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.1363. 

6 
M. Colin and T. Colin, On a quasilinear Zakharov system describing laserplasma interactions, Differential Integral Equations., 17 (2004), 297330. 

7 
M. Colin, T. Colin and M. Ohta, Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction, Ann. Inst. H. Poincaré Anal. Nonlin\éaire., 26 (2009), 22112226. 

8 
M. Colin, T. Colin and M. Ohta, Instability of standing waves for a system of nonlinear Schrödinger equations with threewave interaction, Funkcialaj Ekvacioj., 52 (2009), 371380. 

9 
M. Colin and M. Ohta, Bifurcation from semitrivial standing waves and ground states for a system of nonlinear Schrödinger equations, SIAM J. Math. Anal., 44 (2012), 206223. 

10 
J. Colliander, J. Delort, C. Kenig, and G. Staffilani, Bilinear estimates and applications to 2D NLS, Trans. Amer. Math. Soc., 353 (2001), 33073325. 

11 
J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384436. 

12 
A. Grünrock, On the Cauchy  and periodic boundary value problem for a certain class of derivative nonlinear Schrödinger equations, preprint, arXiv:math/0006195v1. 

13 
M. Hadac, S. Herr and H. Koch, Wellposedness and scattering for the KPII equation in a critical space, Ann. Inst. H. Poincaré Anal. Non linéaie., 26 (2009), 917941. 

14 
M. Hadac, S. Herr and H. Koch, Errantum to "Wellposedness and scattering for the KPII equation in a critical space'' [Ann. I. H. PoincaréAN26 (3) (2009) 917941], Ann. Inst. H. Poincaré Anal. Non linéaie., 27 (2010), 971972. 

15 
N. Hayashi, C. Li and P. Naumkin, On a system of nonlinear Schrödinger equations in 2D, Differential Integral Equations., 24 (2011), 417434. 

16 
N. Hayashi, C. Li and T. Ozawa, Small data scattering for a system of nonlinear Schrödinger equations, Differ. Equ. Appl., 3 (2011), 415426. 

17 
S. Herr, D. Tataru and N. Tzvetkov, Global wellposedness of the energycritical nonlinear Schrödinger equation with small initial data in $H^{1}(T^{3})$, Duke. Math. J., 159 (2011), 329349. 

18 
A. Ionescu and C. Kenig, Global wellposedness of the BenjaminOno equation in lowregularity spaces, J. Amer. Math. Soc., 20 (2007), 753798. 

19 
M. Ikeda, S. Katayama and H. Sunagawa, Null structure in a system of quadratic derivative nonlinear Schrödinger equations, preprint, arXiv:1305.3662v1. 

20 
C. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573603. 

21 
C. Kenig, G. Ponce and L. Vega, Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations, Invent. Math., 134 (1998), 489545. 

22 
H. Koch and N. Tzvetkov, Nonlinear wave interactions for the BenjaminOno equation, Int. Math. Res. Not., 2005 (2005), 18331847. 

23 
S. Mizohata, On the Cauchy Problem, Notes and Reports in Mathematics in Science and Engineering, Science Press & Academic Press., 3 (1985), 177pp. 

24 
L. Molinet, J. C. Saut and N. Tzvetkov, Illposedness issues for the BenjaminOno and related equations, SIAM J. Math. Anal., 33 (2001), 982988. 

25 
T. Ozawa and H. Sunagawa, Small data blowup for a system of nonlinear Schrodinger equations, J. Math. Anal. Appl., 399 (2013), 147155. 

26 
T. Schottdorf, Global existence without decay for quadratic KleinGordon equations, preprint, arXiv:1209.1518v2. 

27 
A. Stefanov, On quadratic derivative Schrödinger equations in one space dimension, Trans. Amer. Math. Soc., 359 (2007), 35893607. 

28 
T. Tao, Global wellposedness of the BenjaminOno equation in $H^{1}(\R )$, J. Hyperbolic Differ. Equ., 1 (2004), 2749. 

Go to top
