Infiniteenergy solutions for the NavierStokes equations in a strip revisited
Pages: 1361  1393,
Issue 4,
July
2014
doi:10.3934/cpaa.2014.13.1361 Abstract
References
Full text (566.3K)
Related Articles
Peter Anthony  University of Surrey, Guildford, Gu27XH, Surrey, United Kingdom (email)
Sergey Zelik  Department of Mathematics, University of Surrey, Guildford, GU2 7XH, United Kingdom (email)
1 
F. Abergel, Attractor for a NavierStokes flow in an unbounded domain. Attractors, inertial manifolds and their approximation (MarseilleLuminy, 1987). RAIRO Model. Math. Anal. Numer., 23 (1989), 359370. 

2 
F. Abergel, Existence and finite dimensionality of the global attractor for evolution equations on unbounded domains, J. Differential Equations, 83 (1990), 85108. 

3 
A. Afendikov and A. Mielke, Dynamical properties of spatially nondecaying 2D NavierStokes flows with Kolmogorov forcing in an infinite strip, J. Math. Fluid Mech., 7 (2005), 5167. 

4 
H. Amann, On the strong solvability of the NavierStokes equations, Jour. Math.Fluid Mechanics, 2 (2000), 1698. 

5 
A. Babin, Asymptotic Expansions at infinity of a strongly perturbed Poiseuille flow, Advances in Soviet Math., 10 (1992), 183. 

6 
A. Babin, The attractor of a NavierStokes system in an unbounded channellike domain, J. Dynam. Differential Equations, 4 (1992), 555584. 

7 
A. Babin and M.Vishik, Attractors of partial differential evolution equations in an unbounded domain, Proc. Roy. Soc. Edinburgh Sect. A, 116 (1990), 221243. 

8 
A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Nauka, Moscow, 1989; North Holland, Amsterdam, 1992. 

9 
M. Efendiev and S. Zelik, The attractor for a nonlinear reactiondiffusion system in an unbounded domain, Comm. Pure Appl. Math., 54 (2001), 625688. 

10 
Y. Giga, S. Matsui and O. Sawada, Global existence of twodimensional NavierStokes flow with nondecaying initial velocity, J. Math. Fluid Mech., 3 (2001), 302315. 

11 
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. SpringerVerlag, BerlinNew York, 1981. 

12 
P. LemarieRieusset, Recent developments in the NavierStokes problem, Chapman $&$ Hall/CRC Research Notes in Mathematics, 431. Chapman & Hall/CRC, Boca Raton, FL, 2002. 

13 
A. Mielke and G. Schneider, Attractors for modulation equations on unbounded domains  existence and comparison, Nonlinearity, 8 (1995), 743768. 

14 
A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in Handbook of Differential Equations: Evolutionary Equations, Vol. IV, 103200, Handb. Differ. Equ., Elsevier/NorthHolland, Amsterdam, 2008. 

15 
J. Pennant and S. Zelik, Global wellposedness in uniformly local spaces for the CahnHilliard equation in $\R^3$, Comm. Pure Appl. Anal., 12 (2013), 461480. 

16 
S. Revina and V. Yudovich, $L^p$estimates for the resolvent of the Stokes operator in an infinite cylinder, (Russian) Mat. Sb., 187 (1996), 97118; translation in Sb. Math., 187 (1996), 881902. 

17 
O. Sawada and Y. Taniuchi, A remark on $L^\infty$solutions to the 2D NavierStokes equations, J. Math. Fluid Mech., 9 (2007), 533542. 

18 
R. Temam, NavierStokes Equations. Theory and Numerical Analysis, NorthHolland, Amsterdam New YorkOxford, 1977. 

19 
R. Temam, InfniteDimensional Dynamical Systems in Mechanics and Physics, Applied Mathematics Series, Springer, New YorkBerlin, 1988; 2nd ed., New York, 1997. 

20 
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, NorthHolland, 1978. 

21 
S. Zelik, Spatially nondecaying solutions of the 2D NavierStokes equation in a strip, Glasg. Math. J., 49 (2007), 525588. 

22 
S. Zelik, Weak spatially nondecaying solutions of 3D NavierStokes equations in cylindrical domains, Instability in models connected with fluid flows. II, 255327, Int. Math. Ser. (N. Y.), 7, Springer, New York, 2008. 

23 
S. Zelik, Attractors of reactiondiffusion systems in unbounded domains and their spatial complexity, Comm. Pure Appl. Math., 56 (2003), 584637. 

24 
S. Zelik, Infinite energy solutions for damped NavierStokes equations in $\R^2$, Jour. Math. Fluid Mech., 15 (2013), 717745. 

Go to top
