`a`
Advances in Mathematics of Communications (AMC)
 

Sets of zero-difference balanced functions and their applications
Pages: 83 - 101, Issue 1, February 2014

doi:10.3934/amc.2014.8.83      Abstract        References        Full text (433.5K)           Related Articles

Qi Wang - Institute of Algebra and Geometry, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany (email)
Yue Zhou - Department of Mathematics and System Sciences, National University of Defense Technology, Changsha, Hunan 410073, China (email)

1 M. Antweiler and L. Bömer, Complex sequences over GF$(p^M)$ with a two-level autocorrelation function and a large linear span, IEEE Trans. Inform. Theory, 38 (1992), 120-130.       
2 C. Carlet, C. Ding and J. Yuan, Linear codes from perfect nonlinear mappings and their secret sharing schemes, IEEE Trans. Inform. Theory, 51 (2005), 2089-2102.       
3 L. Carlitz and C. Wells, The number of solutions of a special system of equations in a finite field, Acta Arith., 12 (1966/1967), 77-84.       
4 P. Dembowski and T. G. Ostrom, Planes of order $n$ with collineation groups of order $n^2$, Math. Z., 103 (1968), 239-258.       
5 C. Ding, Optimal constant composition codes from zero-difference balanced functions, IEEE Trans. Inform. Theory, 54 (2008), 5766-5770.       
6 C. Ding, Optimal and perfect difference systems of sets, J. Combin. Theory Ser. A, 116 (2009), 109-119.       
7 C. Ding, M. J. Moisio and J. Yuan, Algebraic constructions of optimal frequency-hopping sequences, IEEE Trans. Inform. Theory, 53 (2007), 2606-2610.       
8 C. Ding and Y. Tan, Zero-difference balanced functions with applications, J. Stat. Theory Practice, 6 (2012), 3-19.
9 C. Ding and J. Yin, Algebraic constructions of constant composition codes, IEEE Trans. Inform. Theory, 51 (2005), 1585-1589.       
10 C. Ding and J. Yin, Combinatorial constructions of optimal constant-composition codes, IEEE Trans. Inform. Theory, 51 (2005), 3671-3674.       
11 C. Ding and J. Yin, Sets of optimal frequency-hopping sequences, IEEE Trans. Inform. Theory, 54 (2008), 3741-3745.       
12 F.-W. Fu, A. J. H. Vinck and S.-Y. Shen, On the constructions of constant-weight codes, IEEE Trans. Inform. Theory, 44 (1998), 328-333.       
13 R. Fuji-Hara, Y. Miao and M. Mishima, Optimal frequency hopping sequences: a combinatorial approach, IEEE Trans. Inform. Theory, 50 (2004), 2408-2420.       
14 G. Ge, R. Fuji-Hara and Y. Miao, Further combinatorial constructions for optimal frequency-hopping sequences, J. Combin. Theory Ser. A, 113 (2006), 1699-1718.       
15 G. Ge, Y. Miao and Z. Yao, Optimal frequency hopping sequences: auto- and cross-correlation properties, IEEE Trans. Inform. Theory, 55 (2009), 867-879.       
16 S. W. Golomb and G. Gong, Signal Design for Good Correlation, for Wireless Communication, Cryptography, and Radar, Cambridge University Press, Cambridge, 2005.       
17 P. V. Kumar, Frequency-hopping code sequence designs having large linear span, IEEE Trans. Inform. Theory, 34 (1988), 146-151.       
18 A. Lempel and H. Greenberger, Families of sequences with optimal Hamming correlation properties, IEEE Trans. Inform. Theory, 20 (1974), 90-94.       
19 V. I. Levenšteĭn, A certain method of constructing quasilinear codes that guarantee synchronization in the presence of errors, Problemy Peredači Informacii, 7 (1971), 30-40.       
20 V. I. Levenšteĭn, Combinatorial problems motivated by comma-free codes, J. Combin. Des., 12 (2004), 184-196.       
21 R. Lidl and H. Niederreiter, Finite Fields, Second edition, Cambridge University Press, Cambridge, 1997.       
22 Y. Luo, F.-W. Fu, A. J. H. Vinck and W. Chen, On constant-composition codes over $Z_q$, IEEE Trans. Inform. Theory, 49 (2003), 3010-3016.       
23 H. Niederreiter and A. Winterhof, Cyclotomic $\mathfrakR $-orthomorphisms of finite fields, Discrete Math., 295 (2005), 161-171.       
24 K. Nyberg, Perfect nonlinear S-boxes, in Advances in Cryptology-EUROCRYPT '91, Springer, Berlin, 1991, 378-386.       
25 D. Peng and P. Fan, Lower bounds on the Hamming auto- and cross correlations of frequency-hopping sequences, IEEE Trans. Inform. Theory, 50 (2004), 2149-2154.       
26 D. V. Sarwate, Comments on "Lower bounds on the Hamming auto- and cross correlations of frequency-hopping sequences'' by D. Peng and P. Fan, IEEE Trans. Inform. Theory, 51 (2005), 1615.       
27 M. K. Simon, J. K. Omura, R. A. Scholtz and B. K. Levitt, Spread Spectrum Communications Handbook, revised edition, McGraw-Hill Inc., New York, 2002.
28 H. Wang, A new bound for difference systems of sets, J. Combin. Math. Combin. Comput., 58 (2006), 161-167.       
29 Q. Wang, Optimal sets of frequency hopping sequences with large linear spans, IEEE Trans. Inform. Theory, 56 (2010), 1729-1736.       
30 Z. Zhou, X. Tang, D. Wu and Y. Yang, Some new classes of zero-difference balanced functions, IEEE Trans. Inform. Theory, 58 (2012), 139-145.       

Go to top