`a`
Advances in Mathematics of Communications (AMC)
 

Self-dual [62, 31, 12] and [64, 32, 12] codes with an automorphism of order 7
Pages: 73 - 81, Issue 1, February 2014

doi:10.3934/amc.2014.8.73      Abstract        References        Full text (302.3K)           Related Articles

Nikolay Yankov - Faculty of Mathematics and Informatics, Konstantin Preslavski University of Shumen, Shumen, 9712, Bulgaria (email)

1 I. Bouyukliev, About the code equivalence, in Advances in Coding Theory and Cryptography, World Scientific Publishing, 2007.       
2 S. Bouyuklieva, N. Yankov and J.-L. Kim, Classification of binary self-dual [48, 24, 10] codes with an automorphism of odd prime order, Finite Fields Appl., 18 (2012), 1104-1113.       
3 S. Bouyuklieva, N. Yankov and R. Russeva, Classification of the binary self-dual codes having an automorphism of order 3, Finite Fields Appl., 13 (2007), 605-615.       
4 S. Bouyuklieva, N. Yankov and R. Russeva, On the classication of binary self-dual [44, 22, 8] codes with an automorphism of order 3 or 7, Int. J. Inform. Coding Theory, 2 (2011), 21-37.       
5 N. Chigira, M. Harada and M. Kitazume, Extremal self-dual codes of length 64 through neighbors and covering radii, Des. Codes Crypt., 42 (2007), 93-101.       
6 J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory, 36 (1990), 1319-1333.       
7 W. C. Huffman, Automorphisms of codes with application to extremal doubly-even codes of length 48, IEEE Trans. Inform. Theory, 28 (1982), 511-521.       
8 W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Appl., 11 (2005), 451-490.       
9 W. C. Huffman and V. Pless, Fundamentals of Error Correcting Codes, Cambridge University Press, 2003.       
10 V. I. Iorgov, Doubly even extremal codes of length 64, Probl. Inform. Transm., 22 (1986), 277-284.       
11 S. Karadeniz and B. Yildiz, Double-circulant and bordered-double-circulant constructions for self-dual codes over $R_2$, Adv. Math. Commun., 6 (2012), 193-202.       
12 G. Pasquier, A binary extremal doubly even self-dual code (64,32,12) obtained from an extended Reed-Solomon code over $F_{16}$, IEEE Trans. Inform. Theory, 27 (1981), 807-808.       
13 R. Russeva and N. Yankov, On Binary self-dual codes of lengths 60, 62, 64 and 66 having an automorphism of order 9, Des. Codes Crypt., 45 (2007), 335-346.       
14 N. Yankov, On binary self-dual codes of length 62 with an automorphism of order 7, Math. Educ. Math., 40 (2011), 223-228.
15 N. Yankov and R. Russeva, Binary self-dual codes of lengths 52 to 60 with an automorphism of order 7 or 13, IEEE Trans. Inform. Theory, 56 (2011), 7498-7506.       
16 V. Yorgov, Binary self-dual codes with an automorphism of odd order (in Russian), Probl. Inform. Transm., 4 (1983), 13-24.       

Go to top