`a`
Advances in Mathematics of Communications (AMC)
 

An improved lower bound for $(1,\leq 2)$-identifying codes in the king grid
Pages: 35 - 52, Issue 1, February 2014

doi:10.3934/amc.2014.8.35      Abstract        References        Full text (444.6K)           Related Articles

Florent Foucaud - Department of Mathematics, University of Johannesburg, Auckland Park 2006, South Africa (email)
Tero Laihonen - Department of Mathematics and Statistics, University of Turku, 20014 Turku, Finland (email)
Aline Parreau - Institute of Mathematics, University of Liège, 4000 Liège, Belgium (email)

1 Y. Ben-Haim and S. Litsyn, Exact minimum density of codes identifying vertices in the square grid, SIAM J. Discrete Math., 19 (2005), 69-82.       
2 I. Charon, I. Honkala, O. Hudry and A. Lobstein, The minimum density of an identifying code in the king lattice, Discrete Math., 276 (2004), 95-109.       
3 I. Charon, O. Hudry and A. Lobstein, Identifying codes with small radius in some infinite regular graphs, Electr. J. Combin., 9 (2002), R11.       
4 G. Cohen, S. Gravier, I. Honkala, A. Lobstein, M. Mollard, C. Payan and G. Zémor, Improved identifying codes for the grid, Electr. J. Combin., 6 (1999), R19.       
5 G. Cohen, I. Honkala, A. Lobstein and G. Zémor, Bounds for codes identifying vertices in the hexagonal grid, SIAM J. Discrete Math., 13 (2000), 492-504.       
6 G. Cohen, I. Honkala, A. Lobstein and G. Zémor, On codes identifying vertices in the two-dimensional square lattice with diagonals, IEEE Trans. Comp., 50 (2001), 174-176.       
7 D. W. Cranston and G. Yu, A new lower bound on the density of vertex identifying codes for the infinite hexagonal grid, Electr. J. Combin., 16 (2009), R113.       
8 I. Honkala and T. Laihonen, Codes for identification in the king lattice, Graphs Combin., 19 (2003), 505-516.       
9 I. Honkala and T. Laihonen, On identifying codes in the triangular and square grids, SIAM J. Comput., 33 (2004), 304-312.       
10 I. Honkala and T. Laihonen, On identifying codes in the hexagonal mesh, Inform. Proc. Lett., 89 (2004), 9-14.       
11 I. Honkala and T. Laihonen, On identification in the triangular grid, J. Combin. Theory Ser. B, 91 (2004), 67-86.       
12 M. G. Karpovsky, K. Chakrabarty and L. B. Levitin, On a new class of codes for identifying vertices in graphs, IEEE Trans. Inform. Theory, 44 (1998), 599-611.       
13 A. Lobstein, Watching systems, identifying, locating-dominating and discriminating codes in graphs: a bibliography, available from http://perso.enst.fr/~lobstein/bibLOCDOMetID.html
14 M. Pelto, New bounds for $(r,\le 2)$-identifying codes in the infinite king grid, Crypt. Commun., 2 (2010), 41-47.       
15 S. Ray, R. Ungrangsi, F. De Pellegrini, A. Trachtenberg and D. Starobinski, Robust location detection in emergency sensor networks, in Proc. IEEE INFOCOM 2003, San Francisco, March 2003.

Go to top