Advances in Mathematics of Communications (AMC)

Special bent and near-bent functions
Pages: 21 - 33, Issue 1, February 2014

doi:10.3934/amc.2014.8.21      Abstract        References        Full text (342.7K)           Related Articles

Jacques Wolfmann - IMATH(IAA), Université du Sud Toulon-Var, 83957 La Garde Cedex, France (email)

1 A. Canteault, C. Carlet, P. Charpin and C. Fontaine, On cryptographic properties of the cosets of R(1,m), IEEE Trans. Inform. Theory, 47 (2001), 1494-1513.       
2 A. Canteault and P. Charpin, Decomposing bent functions, IEEE Trans. Inform. Theory, 49 (2003), 2004-2019.       
3 J. F. Dillon, Elementary Hadamard Difference Sets, Ph.D thesis, University of Maryland, 1974.       
4 J. F. Dillon, Multiplicative difference sets via additive characters, Des. Codes Cryptogr., 17 (1999), 225-235.       
5 R. Gold, Maximal recursive squences with 3-valued recursive cross-correlation functions, IEEE Trans. Inform. Theory, 14 (1968), 154-156.
6 X. D. Hou, Cubic bent functions, Discrete Math., 189 (1998), 149-161.       
7 G. Leander and G. McGuire, Construction of bent functions from near-bent functions, J. Combin. Theory Ser. A, 116 (2009), 960-970.       
8 O. S. Rothaus, On bent functions, J. Combin. Theory Ser. A, 20 (1976), 300-305.       
9 J. Wolfmann, Bent functions and coding theory, in Difference Sets, Sequences and their Correlation Properties (eds. A. Pott, P. V. Kumar, T. Helleseth and D. Jungnickel), Kluwer Academic Publishers, 1999, 393-418.       
10 J. Wolfmann, Cyclic code aspects of bent functions, in Finite Fields Theory and Applications, Amer. Math. Soc., 2010, 363-384.       

Go to top