Global stability of an agestructured cholera model
Pages: 641  665,
Issue 3,
June
2014
doi:10.3934/mbe.2014.11.641 Abstract
References
Full text (469.5K)
Related Articles
Jianxin Yang  Department of Applied Mathematics, Nanjing University of Science and Technology, Nanjing 210094, China (email)
Zhipeng Qiu  Department of Applied Mathematics, Nanjing University of Science and Technology, Nanjing 210094, China (email)
XueZhi Li  Department of Mathematics, Xinyang Normal University, Xinyang 464000, China (email)
1 
J. R. Andrews and S. Basu, Transmission dynamics and control of cholera in Haiti: An epidemic model, Lancet, 377 (2011), 12481255. 

2 
O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and computation of the basic reproduction ratio $R_0$ in models for infections diseases in hetereogeneous populations, J. Math. Biol., 28 (1998), 365382. 

3 
O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infections Disease: Model Building, Analysis and Interpretation, Wiley, New York, 2000. 

4 
Z. L. Feng, W. Z. Huang and C. CastilloChavez, Global behavior of a multigroup SIS epidemic model with age structure, J. Diff. Equs., 218 (2005), 292324. 

5 
H. I. Freedman and J. W. H. So, Global stability and persistence of simple food chains, Math. Biosci., 76 (1985), 6986. 

6 
B. S. Goh, Global stability in manyspecies systems, Amer. Natur., 111 (1977), 135143. 

7 
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs 25, American Mathematical Society, Providence, RI, 1988. 

8 
J. K. Hale and P. Waltman, Persistence in infinite dimensional systems, SIAM J. Math. Anal., 20 (1989), 388395. 

9 
J. Hofbauer and K. Sigmund, The Theory of Evolution and Dynamical Systems: Mathematical Aspects of Selection, Cambridge University Press, Cambridge, 1988. 

10 
G. Huang, X. N. Liu and Y. Takeuchi, Lyapunov function and global stability for agestructured HIV infection model, SIAM J. Appl. Math., 72 (2012), 2538. 

11 
M. Iannelli, Mathematical Theory of Agestructured Population Dynamics, Applied Mathematics Monographs 7, comitato nazionale per le scienze matematiche, Consiglio Nazionale delle Ricerche (C. N. R), Giardini, Pisa, 1995. 

12 
H. Inaba, A semigroup approach to the strong ergodic theorem of the multistate stable population process, Math. Popul. Studi., 17 (1988), 4777. 

13 
A. L. Lloyd, Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods, Proc. Roy. Soc. Lond. B, 268 (2001), 985993. 

14 
A. L. Lloyd, Realistic distributions of infectious periods in epidemic models: Changing patterns of persistence and dynamics, Theor. Popul. Biol., 60 (2001), 5971. 

15 
P. Magal, Compact attractors for time periodic agestructured population models, Electron. J. Diff. Equs., 65 (2001), 135. 

16 
P. Magal and H. R. Thieme, Eventual compactness for a semiflow generated by an agestructured models, Communications on Pure and Applied Analysis, 3 (2004), 695727. 

17 
P. Magal and X. Q. Zhao, Global attracotor in uniformly persistence dynamical systems, SIAM J. Math. Anal., 37 (2005), 251275. 

18 
E. D'Agata, P. Magal, S. Ruan and G. F. Webb, Asymptotical behavior in nosocomial epidemic model with antibiotic resistance, Diff. Integr. Equs., 19 (2006), 573600. 

19 
P. Magal, C. C. McCluskey and G. Webb, Lyapunov functional and global asymptotic stability for an infectionage model, Appl. Anal., 89 (2010), 11091140. 

20 
P. Magal and C. McCluskey, Two group infection age model: an application to nosocomial infection, SIAM J. Appl. Math., 73 (2013), 10581095. 

21 
F. A. Milner and A. Pugliese, Periodic solutions: a robust numerical method for an SIR model of epidemics, J. Math. Biol., 39 (1999), 471492. 

22 
Z. S. Shuai and P. Van den Driessche, Global dynamics of cholera models with differential infectivity, Math. Biosci., 234 (2011), 118126. 

23 
Z. S. Shuai, J. H. Tien and P. van den Driessche, Cholera models with hyperinfectivity and temporary immunity, Bull. Math. Biol., 74 (2010), 24232445. 

24 
H. R. Thieme, Semiflows generated by Lipschitz perturbations of nondensely defined operators, Diff. Integr. Equs., 3 (1990), 10351066. 

25 
H. R. Thieme and C. CastilloChavez, How may infectionagedependent infectivity affect the dynamics if HIV/AIDs? SIAM J. Appl. Math., 53 (1993), 14471479. 

26 
J. P. Tian, S. Liao and J. Wang, Dynamical Analysis and Control Strategies in Modeling Cholera, 2010. Available from: http://www.math.wm.edu/~jptian/preprints/pr7odecholera.pdf. 

27 
J. P. Tian and J. Wang, Global stability for cholera epidemic model, Math. Biosci., 232 (2011), 3141. 

28 
J. H. Tien and D. J. D. Earn, Multiple transmission pathways and disease dynamics in a waterborne pathogen model, Bull. Math. Biol., 72 (2010), 15061533. 

29 
P. van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 2948. 

30 
G. Webb, Theory of Nonlinear AgeDependent Population Dynamics, Marcel Dekker, New York, 1985. 

Go to top
