A RaoBlackwellized particle filter for joint parameter estimation and biomass tracking in a stochastic predatorprey system
Pages: 573  597,
Issue 3,
June
2014
doi:10.3934/mbe.2014.11.573 Abstract
References
Full text (531.1K)
Related Articles
Laura MartínFernández  Departamento de Física Aplicada, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain (email)
Gianni Gilioli  Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25125 Brescia, Italy (email)
Ettore Lanzarone  CNRIMATI, Via Bassini 15, 20133 Milano, Italy (email)
Joaquín Míguez  Departamento de Teoría de la Señal y Comunicaciones, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Madrid, Spain (email)
Sara Pasquali  CNRIMATI, Via Bassini 15, 20133 Milano, Italy (email)
Fabrizio Ruggeri  CNRIMATI, Via Bassini 15, 20133 Milano, Italy (email)
Diego P. Ruiz  Departamento de Física Aplicada, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain (email)
1 
Y. AïtSahalia, Maximum likelihood estimation of discretely sampled diffusions: a closedform approximation approach, Econometrica, 70 (2002), 223262. 

2 
B. D. O. Anderson and J. B. Moore, Optimal Filtering, Englewood Cliffs, 1979. 

3 
C. Andrieu, A. Doucet and R. Holenstein, Particle Markov chain Monte Carlo methods, Journal of the Royal Statistical Society Series BStatistical Methodology, 72 (2010), 269342. 

4 
C. Andrieu, A. Doucet, S. S. Singh and V. B. Tadić, Particle methods for change detection, system identification and control, Proceedings of the IEEE, 92 (2004), 423438. 

5 
A. Bain and D. Crisan, Fundamentals of Stochastic Filtering, Springer, 2008. 

6 
A. Beskos, O. Papaspiliopoulos, G. O. Roberts and P. Fearnhead, Exact an computationally efficient likelihoodbased estimation for discretely observed diffusion processes, J. Roy. Stat. Soc. Ser. B, 68 (2006), 333382. 

7 
G. Buffoni and G. Gilioli, A lumped parameter model for acarine predatorprey population interactions, Ecological Modelling, 170 (2003), 155171. 

8 
O. Cappé, S. J. Godsill and E. Moulines, An overview of existing methods and recent advances in sequential Monte Carlo, Proceedings of the IEEE, 95 (2007), 899924. 

9 
J. Carpenter, P. Clifford and P. Fearnhead, Improved particle filter for nonlinear problems, IEE Proceedings  Radar, Sonar and Navigation, 146 (1999), 27. 

10 
S. R. Carpenter, K. L. Cottingham and C. A. Stow, Fitting predatorprey models to time series with observation errors, Ecology, 75 (1994), 12541264. 

11 
R. Chen and J. S. Liu, Mixture Kalman filters, Journal of the Royal Statistics Society B, 62 (2000), 493508. 

12 
N. Chopin, P. E. Jacob and O. Papaspiliopoulos, SMC2: An efficient algorithm for sequential analysis of state space models, Journal of the Royal Statistical Society: Series B (Statistical Methodology), (2012). 

13 
J. A. Comiskey, F. Dallmeier and A. Alonso, Framework for Assessment and Monitoring of Biodiversity, Academic Press, New York, 1999. 

14 
R. Douc, O. Cappe and E. Moulines, Comparison of resampling schemes for particle filtering, in ISPA 2005: Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005, 6469. 

15 
A. Doucet, N. de Freitas and N. Gordon (eds.), Sequential Monte Carlo Methods in Practice, Springer, New York (USA), 2001. 

16 
A. Doucet, S. Godsill and C. Andrieu, On sequential Monte Carlo sampling methods for Bayesian filtering, Statistics and Computing, 10 (2000), 197208. 

17 
M. Dowd, A sequential Monte Carlo approach to marine ecological prediction, Environmetrics, 17 (2006), 435455. 

18 
M. Dowd, Estimating parameters for a stochastic dynamic marine ecological system, Environmetrics, 22 (2011), 501515. 

19 
M. Dowd and R. Joy, Estimating behavioral parameters in animal movement models using a stateaugmented particle filter, Ecology, 92 (2011), 568575. 

20 
G. B. Durham and A. R. Gallant, Numerical techniques for maximum likelihood estimation of continuoustime diffusion processes, J. Bus. Econ. Stat., 20 (2002), 297316. 

21 
O. Elerian, S. Chib and N. Shephard, Likelihood inference for discretely observed nonlinear diffusions, Econometrica, 69 (2001), 959993. 

22 
B. Eraker, MCMC analysis of diffusion models with application to finance, J. Bus. Econ. Stat., 19 (2001), 177191. 

23 
G. Gilioli, S. Pasquali and F. Ruggeri, Bayesian inference for functional response in a stochastic predatorprey system, Bulletin of Mathematical Biology, 70 (2008), 358381. 

24 
G. Gilioli, S. Pasquali and F. Ruggeri, Nonlinear functional response parameter estimation in a stochastic predatorprey model, Mathematical Biosciences and Engineering, 9 (2012), 7596. 

25 
G. Gilioli and V. Vacante, Aspetti della dinamica di popolazione del sistema tetranychus urticae phytoseiulus persimilis in pieno campo: implicazioni per le strategie di lotta biologica, in Atti del Convegno "La difesa delle colture in agricoltura biologica"  Notiziario sulla protezione delle piante, vol. 13, 2001. 

26 
A. Golightly and D. J. Wilkinson, Bayesian inference for stochastic kinetic models using a diffusion approximations, Biometrics, 61 (2005), 781788. 

27 
A. Golightly and D. J. Wilkinson, Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo, Interface Focus, 1 (2011), 807820. 

28 
N. Gordon, D. Salmond and A. F. M. Smith, Novel approach to nonlinear and nonGaussian Bayesian state estimation, IEE ProceedingsF, 140 (1993), 107113. 

29 
C. Jost and S. P. Ellner, Testing for predator dependence in predatorprey dynamics: a nonparametric approach, Proc. Roy. Soc. Lond. B, 267 (2000), 16111620. 

30 
R. E. Kalman, A new approach to linear filtering and prediction problems, Journal of Basic Engineering, 82 (1960), 3545. 

31 
J. Knape and P. de Valpine, Fitting complex population models by combining particle filters with Markov chain Monte Carlo, Ecology, 93 (2012), 256263. 

32 
J. Liu and M. West, Combined parameter and state estimation in simulationbased filtering, in Sequential Monte Carlo Methods in Practice (eds. A. Doucet, N. de Freitas and N. Gordon), chap. 10, Springer, 2001, 197223. 

33 
J. S. Liu and R. Chen, Sequential Monte Carlo methods for dynamic systems, Journal of the American Statistical Association, 93 (1998), 10321044. 

34 
J. Míguez, D. Crisan and P. M. Djurić, On the convergence of two sequential Monte Carlo methods for maximum a posteriori sequence estimation and stochastic global optimization, Statistics and Computing. 

35 
P. D. Moral, FeynmanKac Formulae: Genealogical and Interacting Particle Systems with Applications, Springer, 2004. 

36 
M. A. Pascual and K. Kareiva, Predicting the outcome of competition using experimental data: maximum likelihood and Bayesian approaches, Ecology, 77 (1996), 337349. 

37 
A. R. Pedersen, A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations, Scand. J. Stat., 22 (1995), 5571. 

38 
M. K. Pitt and N. Shephard, Filtering via simulation: Auxiliary particle filters, Journal of the American statistical association, 94 (1999), 590599. 

39 
B. L. S. Prakasa Rao, Statistical Inference for Diffusion Type Processes, Arnold, London, 1999. 

40 
C. P. Robert and G. Casella, Monte Carlo Statistical Methods, Springer, 2004. 

41 
2.0.CO;2] K. Shea, H. P. Possingham, W. W. Murdoch and R. Roush, Active adaptive management in insect pest and weed control: intervention with a plan for learning, Ecological Applications, 12 (2002), 927936. 

42 
H. Sorensen, Parametric inference for diffusion processes observed at discrete points in time: a survey, Int. Stat. Rev., 72 (2004), 337354. 

43 
O. Stramer and J. Yan, On simulated likelihood of discretely observed diffusion processes and comparison to closedform approximation, J. Comput. Graph. Stat., 16 (2007). 

44 
J. Y. Xia, R. Rabbinge and W. van der Werf, Multistage functional responses in a leadybeetleaphid system: scaling up from the laboratory to the field, Environmental Entomology, 32 (2003), 151162. 

Go to top
