`a`
Mathematical Biosciences and Engineering (MBE)
 

A model of optimal dosing of antibiotic treatment in biofilm
Pages: 547 - 571, Issue 3, June 2014

doi:10.3934/mbe.2014.11.547      Abstract        References        Full text (960.3K)           Related Articles

Mudassar Imran - Department of Mathematics, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan (email)
Hal L. Smith - School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287-1804, United States (email)

1 N. Abramzon, C. Joaquin, J. D. Bray and G. Brelles-Mario, Biofilm Destruction by RF High-Pressure Cold Plasma Jet, IEEE Trans. Plasma Science, 34 (2006), 1304-1308.
2 J. N. Anderl, M. J. Franklin and P. S. Stewart, Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin, Antimicrob Agents Chemotherapy, 44 (2000), 1818-1824.
3 D. J. Austin, N. J. White and R. M. Anderson, The dynamics of drug action on the within-host population growth of infectious agents: melding pharmacokinetics with pathogen population dynamics, J. Theor. Biol., 194 (1998), 313-339.
4 N. G. Cogan, R. Cortez and L. Fauci, Modeling physiological resistance in bacterial biofilms, B. Math. Biol., 67 (2005), 831-853.       
5 N. G. Cogan, Effects of persister formation on bacterial response to dosing, J. Theor. Biol., 238 (2006), 694-703.       
6 N. G. Cogan, Incorporating toxin hypothesis into a mathematical model of persister formation and dynamics, J. Theor. Biol., 248(2) (2007), 340-349.       
7 N. G. Cogan, J. S. Gunn and J. W. Daniel, Biofilms and infectious diseases: biology to mathematics and back again, EMS Microbiol. Lett., 322 (2011), 1-7.
8 N. G. Cogan, J. S. Gunn and J. W. Daniel, Optimal control strategies for disinfection of bacterial populations with persister/susceptible dynamics, Antimicrob Agents Chemotherapy, 248 (2012), 4816-4826.
9 D. E. Corpet, S. Lumeau and F. Corpet, Minimum antibiotics levels for selecting a resistance plasmid in a gnotobiotic animal model, Antimicrob Agents Chemotherapy, 33 (1989), 535-540.
10 R. M. Cozens, E. Tuomanen, W. Tosch, O. Zak, J. Suter and A. Tomasz, Evaluation of the bactericidal activity of beta-lactam antibiotics on slowly growing bacteria cultured in the chemostat, Antimicrob Agents Chemotherapy, 29 (1986), 797-802.
11 W. A. Craig, Pharmacokinetics/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men, Clinical Infectious Diseases, 26 (1998), 1-12.
12 P. De Leenheer and N. G. Cogan, Failure of antibiotic treatment in microbial populations, J. Math. Biol., 59 (2009), 563-579.       
13 R. M. Donlan and J. W. Costerton, Biofilms: Survival mechanisms of clinically relevant microorganisms, Clin. Microbiol. Rev., 15(2) (2002), 167-193.
14 G. D. Ehrlich, P. Stoodley, S. Kathju, S. Zhao, B. R. McLeod, N. Balaban, F. Z. Hu, G. N. Sotereanos, J. W. Costerton, P. S. Stewart and Q. Lin, Engineering approaches for the detection and control of orthopaedic biofilm infections, Clin. Orthop Relat. Res., 437 (2005), 59-66.
15 K. Fister, S. Lenhart and J. McNally, Optimizing chemotherapy in an HIV model, E. J. Differential Equations, 32 (1998), 1-12.       
16 W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer-Verlag, New York, 1975.       
17 E. L. Gillespie, J. L. Kuti, and D. P. Nicolau, Pharmacodynamics of antimicrobials: treatment optimisation, Expert Opin. Drug Metabolism and Toxi., 1 (2005), 351-361.
18 L. Hall-Stoodley, J. W. Costerton and P. Stoodley, Bacterial biofilms: From the environment to infectious disease, Nature Review Microbiology, 2 (2004), 95-108.
19 J. Hofbauer and J. W.-H. So, Uniform persistence and repellors for maps, Proc. Amer. Math. Soc., 107 (1989), 1137-1142.       
20 N. G. Holford and L. B. Sheiner, Kinetics of pharmacologic response, Pharmac. Ther., 16 (1982), 143-166.
21 S. B. Hsu and P. Waltman, A survey of mathematical models of competition with an inhibitor, Mathematical Biosciences, 187 (2004), 53-91.       
22 M. Imran and H. L Smith, The pharmacodynamics of antibiotic treatment, Computational and Mathematical Methods in Medicine, 7 (2006), 229-263.       
23 M. Imran and H. L. Smith, A Mathematical Model of Gene Transfer in a Biofilm, Mathematics for Ecology and Environmental Sciences, Springer-Verlag, New York, 2007.       
24 M. Imran and H. L Smith, The dynamics of bacterial infection, innate immune, response and antibiotic treatmnet, Discrete and continous dynamical systems-series B, 8 (2007), 127-143.       
25 E. Jung, S. Lenhart and Z. Feng, Optimal control of treatments in a two-strain tuberculosis model, Discrete and Continuous Dynamical Sustems, 2 (2002), 473-482.       
26 D. Kirschner, S. Lenhart and S. Serbin, Optimal control of the chemotherapy of HIV, J. Math. Biol., 35 (1997), 775-792.       
27 Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer-Verlag, New York, 1995.       
28 S. Lenhart and J. T. Workman, Forward-Backward Sweep Method, Chapman & Hall/CRC, Taylor & Francis Group, 2007       
29 R. Lenski and S. Hattingh, Coexistence of two competitors on one resource and one inhibitor, J. Theor. Biology, 122 (1986), 83-92.       
30 B. R. Levin and K. I. Udekwu, Population Dynamics of Antibiotic treatment: Mathematical model and hypotheses for time-kill and continous culture experiments, Antimicrob. Agents Chemother., 54 (2010), 3414-3426.
31 K. Lewis, Riddle of biofilm resistence, Antimicrob. Agents Chemother., 45 (2001), 999-1007.
32 D. M. Livermore, Antibiotic uptake and transport by bacteria, Scand. J. Infect. Dis. Suppl., 74 (1990), 15-22.
33 C. T. Mascio, J. D. Alder and J. A. Silverman, Bactericidal Action of Daptomycin against Stationary-Phase and Nondividing Staphylococcus aureus Cells, Antimicrob Agents Chemother., 51(12) (2007), 4255-4260.
34 R. Pena-Miller, D. Laehnemann, H. Schulenburg, M. Ackermann and R. Beardmore, Selecting against drug-resistant pathogens: Optimal treatments in the presence of commensal bacteria, Bull. Math. Biol., 74 (2012), 908-934.       
35 R. Regoes, C. Wiuff, R. M. Zappala, N. Garner, F. Baquero and B. R. Levin, Pharmacodynamic functions: A multiparameter approach to the design of antibiotic treatment regimens, Antimicrob. Agents Chemother., 48 (2004), 3670-3676.
36 M. Robert and P. S. Stewart, Modeling antibiotic tolerance in biofilms by accounting for nutrient limitation, Antimicrob. Agents Chemother., 48 (2004), 48-52.
37 M. A. Ryder, Catheter-related infections: It's all about biofilm, Topics in Advanced Practice Nursing eJournal, 5 (2005).
38 H. L. Smith, On the existence and stability of bounded almost periodic and periodic solutions of a singularly perturbed nonautonomous system, Diff. and Integ. Equations, 8 (1995), 2125-2144.       
39 P. S. Stewart, Biofilm accumulation model that predicts antibiotic resistance of Pseudomonas aeruginosa biofilms, Antimicrob Agents Chemotherapy, 38 (1994), 1052-1058.
40 P. S. Stewart, Theoretical aspects of antibiotic diffusion into microbial biofilms, Antimicrob Agents Chemotherapy, 40 (1996), 2517-2522.
41 H. R. Thieme, Persistence under relaxed point-dissipativity (with application to an epidemic model), SIAM J. Math. Anal., 24 (1993), 407-435.       
42 E. Tuomanen, Phenotypic tolerance: The search for beta-lactam antibiotics that kill nongrowing bacteria, Reviews of Infectious Disease, 8 (1986), 279-291.
43 E. Tuomanen, R. Cozens, W. Tosch, O. Zak and A. Tomasz, The rate of killing of Escherichia coli by beta-lactam antibiotics is strictly proportional to the rate of bacterial growth, Journal of General Microbiology, 132 (1986), 1297-1304.
44 C. Wiuff, R. M. Zappala, R. Regoes, K. Garner, F. Baquero and B. R. Levin, Phenotypic tolerance: antibiotic enrichment of noninherited resistance in bacterial populations, Antimicrob. Agents Chemotherapy, 49 (2005), 775-792.
45 X. Yan and Y. Zou, Optimal and sub-optimal quarantine and isolation control in SARS epidemics, World Journal of Modelling and Simulation, 47 (2008), 235-245.       
46 P. J. Yeh, M. J. Hegreness, A. P. Aiden and R. Kishony, Drug interactions and the evolution of antibiotic resistance, Nat. Rev., Microbiol., 7 (2009), 460-466.

Go to top