On the HermiteHadamard inequality for convex functions of
two variables
Pages: 1  8,
Issue 1,
March
2014
doi:10.3934/naco.2014.4.1 Abstract
References
Full text (311.1K)
Related Articles
ShuLin Lyu  Department of Mathematics, University of Macau, Macau, China (email)
1 
M. Alomari and M. Darus, Coordinated sconvex function in the first sense with some Hadamardtype inequalities, Int. J. Contemp. Math. Sci., 3 (2008), 15571567. 

2 
Y. Ding, Two classes of means and their applications, Math. Pract. Theory, 25 (1995), 1620. (Chinese) 

3 
S. S. Dragomir, On the Hadamard's inequality for convex functions on the coordinates in a rectangle from the plane, Taiwanese J. Math., 5 (2001), 775788. 

4 
S. S. Dragomir and I. Gomm, Some new bounds for two mappings related to the HermiteHadamard inequality for convex functions, Num. Alg. Cont. & Opt., 2 (2012), 271278. 

5 
S. S. Dragomir and C. E .M. Pearce, Selected Topics on HermiteHadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. 

6 
S. S. Dragomir and S. Wang, An inequality of OstrowskiGrüss' type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Computers. Math. Applic., 33 (1997), 1520. 

7 
S. S. Dragomir and S. Wang, Applications of Ostrowski's inequality to the estimation of error bounds for some special means and for some numerical quadrature rules, Appl. Math. Lett., 11 (1998), 105109. 

8 
N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, 2008. 

9 
D. Y. Hwang, K. L. Tseng and G. S. Yang, Some Hadamard's inequalities for coordinated convex functions in a rectangle from the plane, Taiwanese J. Math., 11 (2007), 6373. 

10 
M. A. Latif and M. Alomari, On Hadamardtype inequalities for hconvex functions on the coordinates, Int. J. Math. Anal., 3 (2009), 16451656. 

11 
M. A. Latif and S. S. Dragomir, On some new inequalities for differentiable coordinated convex functions, J. Inequal. Appl., 1 (2012), 113. 

12 
M. E. Özdemir, E. Set and M. Z. Sarikaya, Some new Hadamard type inequalities for coordinated mconvex and (α, m)convex functions, Hacet. J. Math. Stat., 40 (2011), 219229. 

13 
L. Pei, Typical Problems and Methods in Mathematical Analysis, 2nd edition, Higher Education Press, Beijing, 2006. (Chinese) 

14 
G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, Princeton, 1951. 

15 
M. Z. Sarikaya, On the HermiteHadamard type inequalities for coordinated convex function via fractional integrals, Integr. Transf. Spec. F., 25 (2014), 134147. 

16 
M. Z. Sarikaya, E. Set, M. E. Özdemir and S. S.Dragomir, New some Hadamard's type inequalities for coordinated convex functions, Tamsui Oxf. J. Inf. Math. Sci., 28 (2012), 137152. 

17 
W. Xu and H. Xu, A generalization of convex functions, Journal of Guyuan Teachers College (Natural Science Edition), 24 (2003), 2730. (Chinese) 

Go to top
