Kinetic and Related Models (KRM)

Regularity criteria for the 2D MHD system with horizontal dissipation and horizontal magnetic diffusion
Pages: 45 - 56, Issue 1, March 2014

doi:10.3934/krm.2014.7.45      Abstract        References        Full text (361.5K)           Related Articles

Jishan Fan - Department of Applied Mathematics, Nanjing Forestry University, Nanjing, 210037, China (email)
Tohru Ozawa - Department of Applied Physics, Waseda University, Tokyo, 169-8555, Japan (email)

1 H. Brezis and T. Gallouet, Nonlinear Schrödinger evolution equations, Nonlinear Anal., 4 (1980), 677-681.       
2 H. Brezis and S. Wainger, A note on limiting cases of Sobolev embedding and convolution inequalities, Comm. Partial Differential Equations, 5 (1980), 773-789.       
3 C. Cao, D. Regmi and J. Wu, The 2D MHD equations with horizontal dissipation and horizontal magnetic diffusion, J. Differential Equations, 254 (2013), 2661-2681.       
4 C. Cao and J. Wu, Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion, Adv. Math., 226 (2011), 1803-1822.       
5 E. Casella, P. Secchi and P. Trebeschi, Global classical solutions for MHD system, J. Math. Fluid Mech., 5 (2003), 70-91.       
6 G. Duvaut and J.-L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Rational Mech. Anal., 46 (1972), 241-279.       
7 H. Engler, An alternative proof of the Brezis-Wainger inequality, Comm. Partial Differential Equations, 14 (1989), 541-544.       
8 J. Fan and T. Ozawa, Regularity criteria for the magnetohydrodynamic equations with partial viscous terms and the Leray-$\alpha$-MHD model, Kinet. Relat. Models, 2 (2009), 293-305.       
9 J. Fan and T. Ozawa, Global Cauchy problem for the 2-D magnetohydrodynamic-$\alpha$ models with partial viscous terms, J. Math. Fluid Mech., 12 (2010), 306-319.       
10 J. Fan and T. Ozawa, Global Cauchy problem of an ideal density-dependent MHD-$\alpha$ model, Discrete and Continuous Dynamical Systems. Suppl., I (2011), 400-409.       
11 C. Fefferman and E. M. Stein, $H^p$ spaces of several variables, Acta Math., 129 (1972), 137-193.       
12 T. Kato and G. Ponce, Commutator estimates and the Euler and Navier Stokes equations, Commun. Pure Appl. Math., 41 (1988), 891-907.       
13 C. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de-Vries equations, J. Amer. Math. Soc., 4 (1991), 323-347.       
14 H. Kozono, Weak and classical solutions of the 2-D MHD equations, Tohoku Math. J., 41 (1989), 471-488.       
15 H. Kozono, T. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semilinear evolution equations, Math. Z., 242 (2002), 251-278.       
16 Z. Lei, N. Masmoudi and Y. Zhou, Remarks on the blow-up criteria for Oldroyd models, J. Differential Equations, 248 (2010), 328-341.       
17 Z. Lei and Y. Zhou, BKM's criterion and global weak solutions for magnetohydrodynamics with zero viscosity, Discrete Contin. Dyn. Syst., 25 (2009), 575-583.       
18 J. S. Linshiz and E. S. Titi, Analytical study of certain magnetohydrodynamic-$\alpha$ models, J. Math. Phys., 48 (2007), 065504 (28 pages).       
19 T. Ozawa, On critical cases of Sobolev's inequalities, J. Funct. Anal., 127 (1995), 259-269.       
20 M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635-664.       
21 Y. Zhou and J. Fan, A regularity criterion for the 2D MHD system with zero magnetic diffusivity, J. Math. Anal. Appl., 378 (2011), 169-172.       

Go to top