`a`
Electronic Research Announcements in Mathematical Sciences (ERA-MS)
 

On degenerations of moduli of Hitchin pairs
Pages: 103 - 108, January 2013

doi:10.3934/era.2013.20.105      Abstract        References        Full text (326.2K)           Related Articles

V. Balaji - Chennai Mathematical Institute SIPCOT IT Park, Siruseri-603103, India (email)
P. Barik - Chennai Mathematical Institute SIPCOT IT Park, Siruseri-603103, India (email)
D. S. Nagaraj - Institute of Mathematical Sciences, Taramani, Chennai-600115, India (email)

1 V. Balaji, P. Barik and D. S. Nagaraj, A degeneration of the moduli of Hitchin pairs, arXiv:1308.4490.
2 L. Caporaso, A compactification of the universal Picard variety over the moduli space of stable curves, J. Amer. Math. Soc., 7 (1994), 589-660.       
3 D. Gieseker, A degeneration of the moduli space of stable bundles, J. Differential Geom., 19 (1984), 173-206.       
4 N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3), 55 (1987), 59-126.       
5 N. J. Hitchin, Stable bundles and integrable systems, Duke Math. J., 54 (1987), 91-114.       
6 I. Kausz, A Gieseker type degeneration of moduli stacks of vector bundles on curves, Trans. Amer. Math. Soc., 357 (2005), 4897-4955.       
7 D. S. Nagaraj and C. S. Seshadri, Degenerations of the moduli spaces of vector bundles on curves. II. Generalized Gieseker moduli spaces, Proc. Indian Acad. Sci. Math. Sci., 109 (1999), 165-201.       
8 N. Nitsure, Moduli space of semistable pairs on a curve, Proc. London Math. Soc. (3), 62 (1991), 275-300.       
9 C. Procesi, The toric variety associated to Weyl chambers, in Mots, Lang. Raison. Calc., Hermès, Paris, 1990, 153-161.       
10 A. Schmitt, The Hilbert compactification of the universal moduli space of semistable vector bundles over smooth curves, J. Differential Geom., 66 (2004), 169-209.       
11 C. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math., 75 (1992), 5-95.       
12 C. Simpson, Moduli of representations of the fundamental group of a smooth projective variety. I, Inst. Hautes Études Sci. Publ. Math., 79 (1994), 47-129.       
13 C. Simpson, Moduli of representations of the fundamental group of a smooth projective variety. II, Inst. Hautes Études Sci. Publ. Math., 80 (1994), 5-79.       

Go to top