`a`
Journal of Industrial and Management Optimization (JIMO)
 

Relaxed augmented Lagrangian-based proximal point algorithms for convex optimization with linear constraints
Pages: 743 - 759, Issue 3, July 2014

doi:10.3934/jimo.2014.10.743      Abstract        References        Full text (799.9K)           Related Articles

Yuan Shen - School of Applied Mathematics, Nanjing University of Finance & Economics, Nanjing, 210023, China (email)
Wenxing Zhang - School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China (email)
Bingsheng He - Department of Mathematics, Nanjing University, Nanjing, 210093, China (email)

1 M. V. Afonso, J. M. Bioucas-Dias and M. A. Figueiredo, An augmented lagrangian approach to the constrained optimization formulation of imaging inverse problems, IEEE Trans. Imag. Process., 20 (2011), 681-695.       
2 D. P. Bertsekas, Multiplier methods: A survey, Automatica, 12 (1976), 133-145.       
3 D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Academic Press, 1982.       
4 S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3 (2010), 1-122.
5 G. Chen and M. Teboulle, A proximal-based decomposition method for convex minimization problems, Math. Program., 64 (1994), 81-101.       
6 J. Eckstein, Some saddle-function splitting methods for convex programming, Optim. Methods Softw., 4 (1994), 75-83.
7 J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Program., 55 (1992), 293-318.       
8 J. Eckstein and M. Fukushima, Some reformulation and applications of the alternating direction method of multipliers, in Large Scale Optimization: State of the Art (Eds. W. W. Hager, et al.), Kluwer Academic Publishers, 1994, 115-134.       
9 E. Esser, Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman, UCLA CAM Report, 2009, 9-31.
10 F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer-Verlag, New York, 2003.
11 X. L. Fu and B. S. He, Self-adaptive projection-based prediction-correction method for constrained variational inequalities, Front. Math. China, 5 (2010), 3-21.       
12 M. Fukushima, Application of the alternating direction method of multipliers to separable convex programming problems, Comput. Optim. Appl., 1 (1992), 93-111.       
13 D. Gabay, Applications of the method of multipliers to variational inequalities, in Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems (eds. M. Fortin and R. Glowinski), 299-331, North-Holland, Amsterdam, 1983.
14 R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984.       
15 R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM, Philadelphia, 1989.       
16 T. Goldstein and S. Osher, The split bregman method for l1-regularized problems, SIAM J. Imag. Sci., 2 (2009), 323-343.       
17 G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, 1996.       
18 B. He, L. Liao, D. Han and H. Yang, A new inexact alternating directions method for monotone variational inequalities, Math. Program., 92 (2002), 103-118.       
19 B. He, L. Liao and X. Wang, Proximal-like contraction methods for monotone variational inequalities in a unified framework, Comput. Optim. Appl., 51 (2012), 649-679.       
20 B. He and H. Yang, Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities, Oper. Res. Lett., 23 (1998), 151-161.       
21 B. He and X. Yuan, On the $\mathcalO(1/t)$ convergence rate of the alternating direction method, SIAM J. Numer. Anal., 50 (2012), 700-709.       
22 M. R. Hestenes, Multiplier and gradient methods, J. Optim. Theory App., 4 (1969), 303-320.       
23 Z. Lin, M. Chen, L. Wu and Y. Ma, The augmented lagrange multiplier method for exact recovery of a corrupted low-rank matrices, preprint, arXiv:1009.5055
24 A. Nagurney, Network Economics, A Variational Inequality Approach, Kluwer Academics Publishers, London, 1993.       
25 M. J. D. Powell, A method for nonlinear constraints in minimization problems, in Optimization (ed. R. Fletcher), Academic Press, New York, 1969, 283-298.       
26 S. Ramani and J. A. Fessler, Parallel mr image reconstruction using augmented lagrangian methods, IEEE Trans. Medical Imaging, 30 (2011), 694-706.
27 R. T. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Res., 1 (1976), 97-116.       
28 Y. Shen, Partial convolution total variation problem by augmented Lagrangian-based proximal point descent algorithm, submitted to J. Comput. Math., (2013).
29 Y. Shen and B. He, New augmented Lagrangian-based proximal point algorithms for constrained optimization, Submitted to Front. Math. China, (2011X).
30 Y. Wang, J. Yang, W. Yin and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imaging. Sci., 1 (2008), 248-272.       
31 J. Yang and Y. Zhang, Alternating direction algorithms for $l_1$-problems in compressive sensing, SIAM J. Sci. Comput., 33 (2011), 250-278.       
32 J. Yang, Y. Zhang and W. Yin, An efficient tvl1 algorithm for deblurring multichannel images corrupted by impulsive noise, SIAM J. Sci. Comput., 31 (2009), 2842-2865.       
33 W. Yin, S. Osher, D. Goldfarb and J. Darbon, Bregman iterative algorithms for $l_1$-minimization with applications to compressed sensing, SIAM J. Imaging Sci., 1 (2008), 143-168.       

Go to top