`a`
Kinetic and Related Models (KRM)
 

Stability of a Vlasov-Boltzmann binary mixture at the phase transition on an interval
Pages: 761 - 787, Issue 4, December 2013

doi:10.3934/krm.2013.6.761      Abstract        References        Full text (523.0K)           Related Articles

Raffaele Esposito - International Research Center M&MOCS, Università di L'Aquila, Cisterna di Latina, 04012, Italy (email)
Yan Guo - Division of Applied Mathematics, Brown University, Providence, RI 02812, United States (email)
Rossana Marra - Dipartimento di Fisica and Unità INFN, Università di Roma Tor Vergata, 00133 Roma, Italy (email)

1 S. Bastea, R. Esposito, J. L. Lebowitz and R. Marra, Binary fluids with long range segregating interaction I: Derivation of kinetic and hydrodynamic equation, J. Statist. Phys, 101 (2000), 1087-1136.       
2 S. Bastea and J. L. Lebowitz, Spinodal decomposition in binary gases, Phys. Rev. Lett., 78 (1997), 3499-3502.
3 E. A. Carlen, M. Carvalho, R. Esposito, J. L. Lebowitz and R. Marra, Free energy minimizers for a two-species model with segregation and liquid-vapor transition, Nonlinearity, 16 (2003), 1075-1105.       
4 E. A. Carlen, M. C. Carvalho, R. Esposito, J. L. Lebowitz and R. Marra, Displacement convexity and minimal fronts at phase boundaries, Arch. Rat. Mech. Anal., 194 (2009), 823-847.       
5 A. De Masi, E. Olivieri and E. Presutti, Spectral properties of integral operators in problems of interface dynamics and metastability, Markov Processes and Related Fields, 4 (1998), 27-112.       
6 R. Esposito , Y. Guo and R. Marra, Stability of the front under a Vlasov-Fokker-Planck dynamics, Arch. Rational Mech. Anal., 195 (2010), 75-116.       
7 R. Esposito, Y. Guo and R. Marra, Phase transition in a Vlasov-Boltzmann binary mixture, Commun. Math. Phys., 296 (2010), 1-33.       
8 Yan Guo, Decay and continuity of the Boltzmann equation in bounded domains, Arch. Rational Mech. Anal., 197 (2010), 713-809.       
9 Y. Guo and W. A. Strauss, Unstable oscillatory-tail waves in collisionless plasmas, SIAM J. Math. Anal., 30 (1999), 1076-1114 (electronic).       
10 T. Kato, Perturbation Theory for Linear Operators, Second edition. Grundlehren der Mathematischen Wissenschaften, Band 132. Springer-Verlag, Berlin-New York, 1976.       
11 O. Penrose, Electrostatic instability of a non-Maxwellian plasma, Phys. Fluids., 3 (1960), 258-265.
12 E. Presutti, Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics, Theoretical and Mathematical Physics. Springer, Berlin, 2009.       

Go to top