`a`
Kinetic and Related Models (KRM)
 

Unstable galaxy models
Pages: 701 - 714, Issue 4, December 2013

doi:10.3934/krm.2013.6.701      Abstract        References        Full text (489.3K)           Related Articles

Zhiyu Wang - School of Mathematical Sciences, Peking University, Beijing, 100871, China (email)
Yan Guo - Division of Applied Mathematics, Brown University, Providence, RI 02912, United States (email)
Zhiwu Lin - School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, United States (email)
Pingwen Zhang - School of Mathematical Sciences, Peking University, Beijing, 100871, China (email)

1 V. A. Antonov, Remarks on the problem of stability in stellar dynamics, Soviet Astr. J., 4 (1960), 859-867.       
2 V. A. Antonov, Solution of the Problem of Stability of Stellar System Emden'S Density Law and the Spherical Distribution of Velocities, Vestnik Leningradskogo Universiteta, Leningrad University, 1962.
3 J. Barnes, P. Hut and J. Goodman, Dynamical instabilities in spherical stellar systems, Astrophysical Journal, 300 (1986), 112-131.       
4 P. Bartholomew, On the theory of stability of galaxies, Monthly Notices of the Royal Astronomical Society, 151 (1971), 333-350.
5 G. Bertin, Dynamics of Galaxies, Cambridge University Press, Cambridge, 2000.       
6 J. Binney and S. Tremaine, Galactic Dynamics (2nd Edition), Princeton University Press, 2008.
7 J. P. Doremus, M. R. Feix and G. Baumann, Stability of encounterless spherical stellar systems, Phys. Rev. Letts, 26 (1971), 725-728.
8 D. Gillon, M. Cantus, J. P. Doremus and G. Baumann, Stability of self-gravitating spherical systems in which phase space density is a function of energy and angular momentum, for spherical perturbations, Astronomy and Astrophysics, 50 (1976), 467-470.       
9 A. Fridman and V. Polyachenko, Physics of Gravitating System Vol I, Springer-Verlag, 1984.
10 J. Goodman, An instability test for nonrotating galaxies, Astrophysical Journal, 329 (1988), 612-617.       
11 Y. Guo and Z. Lin, Unstable and stable galaxy models, Commun. Math. Phys., 279 (2008), 789-813.       
12 M. Henon, Numerical experiments on the stability of spherical stellar systems, Astronomy and Astrophysics, 24 (1973), 229-238.
13 Y. Guo and G. Rein, A non-variational approach to nonlinear stability in stellar dynamics applied to the King model, Comm. Math. Phys., 271 (2007), 489-509.       
14 H. Kandrup and J. F. Signet, A simple proof of dynamical stability for a class of spherical clusters, The Astrophys. J., 298 (1985), 27-33.       
15 H. Kandrup, A stability criterion for any collisionless stellar equilibrium and some concrete applications thereof, Astrophysical Journal, 370 (1991), 312-317.
16 D. Merritt, Elliptical galaxy dynamics, The Publications of the Astronomical Society of the Pacific, 111 (1999), 129-168.
17 P. L. Palmer, Stability of Collisionless Stellar Systems: Mechanisms for the Dynamical Structure of Galaxies, Kluwer Academic Publishers, 1994.
18 J. Perez and J. Aly, Stability of spherical stellar systems - I. Analytical results, Monthly Notices of the Royal Astronomical Society, 280 (1996), 689-699.
19 J. F. Sygnet, G. des Forets, M. Lachieze-Rey and R. Pellat, Stability of gravitational systems and gravothermal catastrophe in astrophysics, Astrophysical Journal, 276 (1984), 737-745.
20 G. Rein and A. D. Rendall, Compact support of spherically symmetric equilibria in non-relativistic and relativistic galactic dynamics, Math. Proc. Camb Phil. Soc., 128 (2000), 363-380.       

Go to top