`a`
Evolution Equations and Control Theory (EECT)
 

Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions
Pages: 631 - 667, Issue 4, December 2013

doi:10.3934/eect.2013.2.631      Abstract        References        Full text (803.7K)           Related Articles

Nicolas Fourrier - Department of Mathematics, University of Virginia, Charlottesville, VA 22904, United States (email)
Irena Lasiecka - Department of Mathematics, University of Memphis, Memphis, TN 38152-3370, IBS, Polish Academy of Sciences, Warsaw, Poland (email)

1 B. Andràs and K. J Engel, Abstract wave equations with generalized Wentzell boundary conditions, Journal of Differential Equations, 207 (2004), 1-20.       
2 W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc., 306 (1988), 837-852.       
3 G. Avalos and I. Lasiecka, The strong stability of a semigroup arising from a coupled hyperbolic/parabolic system, Semigroup Forum, 57 (1998), 278-292.       
4 G. Avalos and D. Toundykov, Boundary stabilization of structural acoustic interactions with interface on a Reissner-Mindlin plate, Nonlinear Anal. Real World Appl., 12 (2011), 2985-3013.       
5 J. T. Beale and S. I. Rosencrans, Acoustic boundary conditions, Bull. Amer. Math. Soc., 80 (1974), 1276-1278.       
6 J. T. Beale, Spectral properties of an acoustic boundary condition, Indiana Univ. Math. J., 25 (1976), 895-917.       
7 J. T. Beale, Acoustic scattering from locally reacting surfaces, Indiana Univ. Math. J., 26 (1977), 199-222.       
8 S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, 15. Springer-Verlag, New York, 1994.       
9 A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455-478.       
10 S. Čanić and A. Mikelić, Effective equations modeling the flow of a viscous incompressible fluid through a long elastic tube arising in the study of blood flow through small arteries, SIAM J. Appl. Dyn. Syst., 2 (2003), 431-463.       
11 S. P. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems, Pacific J. Math., 136 (1989), 15-55.       
12 A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with generalized Wentzell boundary condition, Journal of Evolution Equations, 2 (2002), 1-19.       
13 A. Favini, C. Gal, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The non-autonomous wave equation with general Wentzell boundary conditions, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 135 (2005), 317-329.       
14 A. Favini, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, Elliptic operators with general Wentzell boundary conditions, analytic semigroups and the angle concavity theorem, Math. Nachr., 283 (2010), 504-521.       
15 B. Friedman, Principles and Techniques of Applied Mathematics, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1956.       
16 C. Gal, G. R. Goldstein and J. A. Goldstein, Oscillatory boundary conditions for acoustic wave equations, Journal of Evolution Equations, 3 (2003), 623-635.       
17 S. Gerbi and B. Said-Houari, Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions, Nonlinear Anal., 74 (2011), 7137-7150.       
18 S. Gerbi and B. Said-Houari, Local existence and exponential growth for a semilinear damped wave equation with dynamic boundary conditions, Adv. Differential Equations, 13 (2008), 1051-1074.       
19 P. J. Graber and B. Said-Houari, Existence and asymptotic behavior of the wave equation with dynamic boundary conditions, Appl. Math. Optim., 66 (2012), 81-122.       
20 P. J. Graber, Uniform boundary stabilization of a wave equation with nonlinear acoustic boundary conditions and nonlinear boundary damping, Journal of Evolution Equations, 12 (2012), 141-164.       
21 A. Haraux and M. Otani, Analyticity and regularity for a class of second order evolution equations, Evolution Equations and Control Theory, 2 (2013), 101-117.
22 M. A. Horn and W. Littman, Local smoothing properties of a Schrödinger equation with nonconstant principal part, In: Modelling and optimization of distributed parameter systems, (1996), New York, 104-110.       
23 M. A. Horn and W. Littman, Boundary control of a Schrödinger equation with nonconstant principal part, In: Control of partial differential equations and applications, Lecture Notes in Pure and Appl. Math., 174 (1996), New York, 101-106.       
24 J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation, J. Differential Equations, 50 (1983), 163-182.       
25 W. Littman, The wave operator and $L_p$ norms, J. Math. Mech., 12 (1963), 55-68.       
26 W. Littman and L. Markus, Exact boundary controllability of a hybrid system of elasticity, Archive for Rational Mechanics and Analysis, 103 (1988), 193-236.       
27 W. Littman and L. Markus, Stabilization of a hybrid system of elasticity by feedback boundary damping, Annali di Matematica Pura ed Applicata, 152 (1988), 281-330.       
28 W. Littman and S. Taylor, Smoothing evolution equations and boundary control theory, J. Anal. Math., 59 (1992), 117-131.       
29 W. Littman and S. Taylor, Local smoothing and energy decay for a semi-infinite beam pinned at several points, and applications to boundary control, In: Differential equations, dynamical systems, and control science, Lecture Notes in Pure and Appl. Math., 152 (1994), New York, 683-704.       
30 W. Littman and B. Liu, On the spectral properties and stabilization of acoustic flow, SIAM J. Appl. Math., 59 (1999), 17-34.       
31 W. Littman and S. Taylor, The heat and Schrödinger equations: Boundary control with one shot, In: Control Methods in PDE-dynamical Systems, Contemp. Math., 426 (2007), 293-305.       
32 G. Lumer and R. S. Phillips, On the spectral properties and stabilization of acoustic flow, Pacific J. Math., 11 (1961), 679-698.       
33 T. Meurer and A. Kugi, Tracking control design for a wave equation with dynamic boundary conditions modeling a piezoelectric stack actuator, International Journal of Robust and Nonlinear Control, 21 (2011), 542-562.       
34 P. M. Morse and K. U. Ingard, Theoretical Acoustics, Princeton University Press, 1987.
35 D. Mugnolo, Abstract wave equations with acoustic boundary conditions, Math. Nachr., 279 (2006), 299-318.       
36 D. Mugnolo, Damped wave equations with dynamic boundary conditions, J. Appl. Anal., 17 (2011), 241-275.       
37 A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983.       
38 M. Renardy, On the stability of differentiability of semigroups, Semigroup Forum, 51 (1995), 343-346.       
39 S. Taylor, Gevrey's Semigroups, Ph.D. Thesis, University of Minnesota, School of Mathematics 1989.
40 S. Taylor, Gevrey smoothing properties of the Schrödinger evolution group in weighted Sobolev spaces, J. Math. Anal. Appl., 194 (1995), 14-38.       
41 V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, Second edition. Springer Series in Computational Mathematics, 25. Springer-Verlag, Berlin, 2006.       
42 R. Triggiani, Wave equation on a bounded domain with boundary dissipation: an operator approach, In: Operator methods for optimal control problems, Lecture Notes in Pure and Appl. Math., 108 (1987), 283-310.       
43 R. P. Vito and S. A. Dixon, Blood Vessel Constitutive Models, Annual Review of Biomedical Engineering, 5 (2003), 413-439.
44 T. J. Xiao and J. Liang, A solution to an open problem for wave equations with generalized Wentzell boundary conditions, Mathematische Annalen, 327 (2003), 351-363.       
45 T. J. Xiao and J. Liang, Complete second order differential equations in Banach spaces with dynamic boundary condition, J. Differential Equations, 200 (2004), 105-136.       
46 T. J. Xiao and J. Liang, Second order parabolic equations in Banach spaces with dynamic boundary conditions, Trans. Amer. Math. Soc., 356 (2004), 4787-4809.       

Go to top