`a`
Evolution Equations and Control Theory (EECT)
 

A remark on Littman's method of boundary controllability
Pages: 621 - 630, Issue 4, December 2013

doi:10.3934/eect.2013.2.621      Abstract        References        Full text (337.3K)           Related Articles

Matthias Eller - Department of Mathematics, Georgetown University, Washington, DC 20057, United States (email)

1 M. Atiyah, R. Bott and L. G$\dota$rding, Lacunas for hyperbolic differential operators with constant coefficients. I, Acta Mathematica, 124 (1970), 109-189.       
2 M. Atiyah, R. Bott and L. G$\dota$rding, Lacunas for hyperbolic differential operators with constant coefficients. II, Acta Mathematica, 131 (1973), 145-206.       
3 L. Ahlfors, Complex Analysis, An introduction to the theory of analytic functions of one complex variable. Third edition. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York, 1978.       
4 F. Alabau and V. Komornik, Boundary observability, controllability, and stabilization of linear elastodynamic systems, SIAM Journal on Control and Optimization, 37 (1999), 521-542.       
5 C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM Journal on Control and Optimization, 30 (1992), 1024-1065.       
6 M. Eller, V. Isakov, G. Nakamura and D. Tataru, Uniqueness and stability in the Cauchy problem for Maxwell and elasticity systems, in Studies in Mathematics and its Applications, 31, North-Holland, (2002), 329-349.       
7 M. Eller, Continuous observability for the anisotropic Maxwell system, Applied Mathematics and Optimization, 55 (2007), 185-201.       
8 M. Eller and D. Toundykov, A global Holmgren theorem for multidimensional hyperbolic partial differential equations, Applicable Analysis, 91 (2012), 69-90.       
9 R. Gulliver and W. Littman, Chord uniqueness and controllability: The view from the boundary. I, in Contemporary Mathematics, 268, American Mathematical Society, (2000), 145-175.       
10 D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations Of Second Order, second edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 224. Springer-Verlag, Berlin, 1983.       
11 L. Ho, Observabilité frontière de l'équation des ondes, Comptes Rendus des Séances de l'Académie des Sciences. Série I. Mathématique, 302 (1986), 443-446.       
12 L. Hörmander, On the existence and the regularity of solutions of linear pseudo-differential equations, L'Enseignement Mathématique. Revue Internationale. IIe Série, 17 (1971), 99-163.       
13 L. Hörmander, The Analysis Of Linear Partial Differential Operators. I, Distribution theory and Fourier analysis. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 256. Springer-Verlag, Berlin, 1983.       
14 L. Hörmander, The Analysis Of Linear Partial Differential Operators. II, Differential operators with constant coefficients. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 257. Springer-Verlag, Berlin, 1983.       
15 M. A. Horn, Exact controllability of the Euler-Bernoulli plate via bending moments only on the space of optimal regularity, Journal of Mathematical Analysis and Applications, 167 (1992), 557-581.       
16 F. John, Partial Differential Equations, fourth edition, Springer-Verlag, New York, 1991.       
17 J. E. Lagnese, Exact boundary controllability of Maxwell's equations in a general region, SIAM Journal on Control and Optimization, 27 (1989), 374-388.       
18 I. Lasiecka and R. Triggiani, Exact controllability of the wave equation with Neumann boundary control, Applied Mathematics and Optimization, 19 (1989), 243-290.       
19 I. Lasiecka and R. Triggiani, Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions, Applied Mathematics and Optimization, 25 (1992), 189-224.       
20 I. Lasiecka, R. Triggiani and X. Zhang, Nonconservative wave equations with unobserved Neumann B.C.: Global uniqueness and observability in one shot, in Contemporary Mathematics, 268, American Mathematical Society, (2000), 227-325.       
21 J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Review, 30 (1988), 1-68.       
22 W. Littman, Near optimal time boundary controllability for a class of hyperbolic equations, in Lecture Notes in Control and Information Science, 97, Springer-Verlag, (1987), 307-312.       
23 W. Littman, A remark on boundary control on manifolds, in Lecture Notes in Pure and Applied Mathematics, 242, Chapman & Hall/CRC, (2005), 175-181.       
24 W. Littman and S. Taylor, Smoothing evolution equations and boundary control theory, Journal d'Analyse Mathématique, 59 (1992), 117-131.       
25 R. Melrose and G. Uhlmann, Microlocal structure of involutive conical refraction, Duke Mathematical Journal, 46 (1979), 571-582.       
26 N. Ortner and P. Wagner, On conical refraction in hexagonal and cubic media, SIAM Journal on Applied Mathematics, 70 (2009), 1239-1259.       
27 D. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions, SIAM Review, 20 (1978), 639-739.       
28 R. Sakamoto, Hyperbolic Boundary Value Problems, Translated from the Japanese by Katsumi Miyahara. Cambridge University Press, Cambridge-New York, 1982.       
29 D. Tataru, Boundary controllability for conservative PDEs, Applied Mathematics and Optimization, 31 (1995), 257-295.       
30 D. Tataru, On the regularity of boundary traces for the wave equation, Annali della Scuola Normale Superiore di Pisa, 26 (1998), 185-206.       
31 M. Taylor, Pseudodifferential Operators, Princeton Mathematical Series, 34. Princeton University Press, Princeton, N.J., 1981.       
32 R. Triggiani, Regularity theory, exact controllability, and optimal quadratic cost problem for spherical shells with physical boundary controls, Control and Cybernetics, 25 (1996), 553-568.       

Go to top