Modeling some properties of circadian rhythms
Pages: 317  330,
Issue 2,
April
2014
doi:10.3934/mbe.2014.11.317 Abstract
References
Full text (1166.2K)
Related Articles
Miguel LaraAparicio  Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México,, Mexico (email)
Carolina BarrigaMontoya  Laboratorio de Cronobiología, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico (email)
Pablo PadillaLongoria  Departamento de Matemáticas y Mecánica, Instituto de Investigaciones, en Matemáticas Aplicadas y en Sistemas. Universidad Nacional Autónoma de México, Mexico (email)
Beatriz FuentesPardo  Laboratorio de Cronobiología, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico (email)
1 
D. J. Amit and N. Brunel, Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex, Cerebral Cortex, 7 (1997), 237252. 

2 
M. Barbi, S. Chillemi, A. Di Garbo and L. Reale, Stochastic resonance in a sinusoidally forced LIF model with noisy threshold, Biosystems, 71 (2003), 2328. 

3 
O. Bernander, C. Koch and M. Usher, The effect of synchronized inputs at the single neuron level, Neural Computation, 6 (1994), 622641. 

4 
A. Buonocore, A. Di Crescenzo, V. Giorno, A. G. Nobile and L. M. Ricciardi, A Markov chainbased model for actomyosin dynamics, Sci. Math. Japon., 70 (2009), 159174. 

5 
A. Buonocore, A. Di Crescenzo, B. Martinucci and L. M. Ricciardi, A stochastic model for the stepwise motion in actomyosin dynamics, Sci. Math. Japon., 58 (2003), 245254. 

6 
M. J. Berry and M. Meister, Refractoriness and neural precision, J. Neurosci., 18 (1998), 22002211. 

7 
A. N. Burkitt, A review of the integrateandfire neuron model. I. Homogeneous synaptic input, Biol. Cybern., 95 (2006), 119. 

8 
A. N. Burkitt, A review of the integrateandfire neuron model. II. Inhomogeneous synaptic input and network properties, Biol. Cybern., 95 (2006), 97112. 

9 
H. P. Chan and W.L. Loh, Some theoretical results on neural spike train probability models, Ann. Stat., 35 (2007), 26912722. 

10 
M. Crowder, Classical Competing Risks, Chapman & Hall/CRC, Boca Raton, 2001. 

11 
M. Deger, S. Cardanobile, M. Helias and S. Rotter, The Poisson process with dead time captures important statistical features of neural activity, BMC Neuroscience, 10 (2009), P110. 

12 
A. Di Crescenzo, E. Di Nardo, A. G. Nobile, E. Pirozzi and L. M. Ricciardi, On some computational results for single neurons' activity modeling, BioSystems, 58 (2000), 1926. 

13 
A. Di Crescenzo, V. Giorno, A. G. Nobile and L. M. Ricciardi, Stochastic population models with interacting species, J. Math. Biol., 42 (2001), 125. 

14 
A. Di Crescenzo, V. Giorno, A. G. Nobile and L. M. Ricciardi, A note on birthdeath processes with catastrophes, Stat. Prob. Lett., 78 (2008), 22482257. 

15 
A. Di Crescenzo, V. Giorno, A. G. Nobile and L. M. Ricciardi, On time nonhomogeneous stochastic processes with catastrophes, in Cybernetics and Systems 2010 (ed. R. Trappl), Austrian Society for Cybernetic Studies, Vienna, 2010, 169174. 

16 
A. Di Crescenzo and M. Longobardi, On the NBU ageing notion within the competing risks model, J. Stat. Plann. Infer., 136 (2006), 16381654. 

17 
A. Di Crescenzo and M. Longobardi, Competing risks within shock models, Sci. Math. Japon., 67 (2008), 125135. 

18 
A. Di Crescenzo, B. Martinucci, E. Pirozzi and L. M. Ricciardi, On the interaction between two Stein's neuronal units, in Cybernetics and Systems 2004 (ed. R. Trappl), Austrian Society for Cybernetic Studies, Vienna, 2004, 205210. 

19 
G. L. Gerstein and B. Mandelbrot, Random walk models for the spike activity of a single neuron, Biophy. J., 4 (1964), 4168. 

20 
D. Hampel and P. Lansky, On the estimation of refractory period, J. Neurosci. Meth., 171 (2008), 288295. 

21 
D. H. Johnson, Point process models of singleneuron discharges, J. Comput. Neurosci., 3 (1996), 275299. 

22 
D. H. Johnson and A. Swami, The transmission of signals by auditorynerve fiber discharge patterns, J. Acoust. Soc. Am., 74 (1983), 493501. 

23 
R. E. Kass and V. Ventura, A spiketrain probability model, Neural Comput., 13 (2001), 17131720. 

24 
A. Mazzoni, F. D. Broccard, E. GarciaPerez, P. Bonifazi, M. E. Ruaro and V. Torre, On the dynamics of the spontaneous activity in neuronal networks, PLoS ONE, 2 (2007), e439. 

25 
M. I. Miller, Algorithms for removing recoveryrelated distortion from auditory nerve discharge patterns, J. Acoust. Soc. Am., 77 (1985), 14521464. 

26 
U. Picchini, S. Ditlevsen, A. De Gaetano and P. Lansky, Parameters of the diffusion leaky integrateandfire neuronal model for a slowly fluctuating signal, Neural Comput., 20 (2008), 26962714. 

27 
L. M. Ricciardi, Diffusion Processes and Related Topics in Biology, Notes taken by Charles E. Smith, Lecture Notes in Biomathematics, Vol. 14, SpringerVerlag, BerlinNew York, 1977. 

28 
L. M. Ricciardi, Modeling single neuron activity in the presence of refractoriness: New contributions to an old problem, in Imagination and Rigor. Essays on Eduardo R. Caianiello's Scientific Heritage (ed. S. Termini), SpringerVerlag Italia, 2006, 133145. 

29 
L. M. Ricciardi, A. Di Crescenzo, V. Giorno and A. G. Nobile, On the instantaneous return process for neuronal diffusion models, in Structure: from Physics to General Systems  Festschrift Volume in Honour of E.R. Caianiello on his Seventieth Birthday (eds. M. Marinaro and G. Scarpetta), World Scientific, Singapore, 1992, 7894. 

30 
L. M. Ricciardi, A. Di Crescenzo, V. Giorno and A. G. Nobile, An outline of theoretical and algorithmic approaches to first passage time problems with applications to biological modeling, Math. Japon., 50 (1999), 247322. 

31 
W. R. Softky and C. Koch, The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs, The Journal of Neuroscience, 13 (1993), 334350. 

32 
R. B. Stein, A theoretical analysis of neuronal variability, Biophys. J., 5 (1965), 173194. 

33 
T. Tateno, S. Doi, S. Sato and L. M. Ricciardi, Stochastic phase lockings in a relaxation oscillator forced by a periodic input with additive noise: A firstpassagetime approach, J. Stat. Phys., 78 (1995), 917935. 

34 
K. Yoshino, T. Nomura, K. Pakdaman and S. Sato, Synthetic analysis of periodically stimulated excitable and oscillatory membrane models, Phys. Rev. E (3), 59 (1999), 956969. 

Go to top
