Mathematical Biosciences and Engineering (MBE)

Local versus nonlocal barycentric interactions in 1D agent dynamics
Pages: 303 - 315, Issue 2, April 2014

doi:10.3934/mbe.2014.11.303      Abstract        References        Full text (472.5K)                  Related Articles

Max-Olivier Hongler - Ecole Polytechnique Fédérale de Lausanne, STI-IMT-LPM, Station 17, CH-1015 Lausanne, Switzerland (email)
Roger Filliger - Bern University of Applied Sciences, Quellgasse 21, CH-2501 Biel, Switzerland (email)
Olivier Gallay - IBM Zurich Research Laboratory, Saeumerstrasse 4, CH-8803 Rueschlikon, Switzerland (email)

1 D. Armbruster, E. Gel and J. Murakami, Bucket brigades with worker learning, Eur. J. of Oper. Res., 176 (2007), 264-274.
2 M. Balázs, M. Rácz and B. Tóth, Modeling flocks and prices: Jumping particles with an attractive interaction, preprint, arXiv:1107.3289v1.
3 A. D. Banner, R. Fernholz and I. Karatzas, On Atlas models of equity markets, Ann. of App. Prob., 15 (2005), 2296-2330.       
4 J. J. Bartholdi III and D. D. Eisenstein, A production line that balances itself, Oper. Res., 44 (1996), 21-34.
5 J. J. Bartholdi III, D. D. Eisenstein and R. D. Foley, Performance of bucket brigades when work is stochastic, Oper. Res., 49 (2001), 710-719.
6 S. Bazazi, P. Romanczuk, S. Thomas, L. Schimansky-Geier, J. J. Hale, G. A. Miller, G. A. Sword, S. J. Simpson and I. D. Couzin, Nutritional state and collective motion: From individuals to mass migration, Proc. of the Roy. Soc. Lond. Ser. B., 278 (2011), 356-363.
7 N. Bellomo and C. Dogbe, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Rev., 53 (2011), 409-463.       
8 E. Bertin, M. Droz and G. Grégoire, Boltzmann and hydrodynamic description for self-propelled particles, Phys. Rev. E, 74 (2006), 022101, 4 pp.
9 E. Bertin, M. Droz nad G. Grégoire, Hydrodynamic equations for self-propelled particles: Microscopic derivation and stability analysis, J. Phys. A: Math. Theor., 42 (2009), 445001.
10 W. Bialek, A. Cavagna, I. Giardina, T. Mora, E. Silvestri, M. Viale and A. M. Walczak, Statistical mechanics for natural flocks of birds, Proc. Natl. Acad. Sci., 109 (2012), 4786-4791.
11 L. L. Bonilla, C. J. Pérez Vicente, F. Ritort and J. Soler, Exact solutions and dynamics of globally coupled oscillators, Math. Mod. Meth. App. Sci., 16 (2006), 1919-1959.       
12 J. Buhl, D. J. T. Sumpter, I. D. Couzin, J. J. Hale, E. Despland, E. R. Miller and S. J. Simpson, From disorder to order in marching locusts, Science, 312 (2006), 1402-1406.
13 A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, R. Santagati, F. Stefanini and M. Viale, Scale-free correlations in starling flocks, Proc. Natl. Acad. Sci., 107 (2010), 11865-11870.
14 H. Chaté, F. Ginelli, G. Grégoire and F. Raynaud, Collective motion of self-propelled particles interacting without cohesion, Phys. Rev. E, 77 (2008), 046113, 15 pp.
15 S. Chatterjee and S. Pal, A phase transition behavior for Brownian motions interacting through their ranks, Prob. Th. Rel. Fiel., 147 (2010), 123-159.       
16 Y.-L. Chou, R. Wolfe and T. Ihle, Kinetic theory for systems of self-propelled particles with metric-free interactions, Phys. Rev. E, 86 (2012), 021120, 20 pp.
17 F. Comets, M. V. Menshikov, S. Volkov and A. R. Wade, Random walk with barycentric self-interaction, J. Stat Phys., 143 (2011), 855-888.       
18 F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. on Autom. Contr., 52 (2007), 852-862.       
19 V. Dosetti, Cohesive motion in one-dimensional flocking, J. Phys. A, 45 (2012), 035003, 20 pp.       
20 R. Eftimie, Hyperbolic and kinetic models for self-organized biological aggregations and movement: A brief review, J. Math. Biol., 65 (2012), 35-75.       
21 R. Eftimie, G. de Vries, M. A. Lewis and F. Lutscher, Modeling group formation and activity patterns in self-organizing collectives of individuals, Bull. Math. Biol., 69 (2007), 1537-1565.       
22 E. R. Fernholz and I. Karatzas, Stochastic portfolio theory: A survey, in Handbook of Numerical Analysis. Mathematical Modeling and Numerical Methods in Finance (ed. A. Bensoussan), Elsevier, Amsterdam, 2009, 89-168.
23 T. D. Frank, Nonlinear Fokker Planck Equations. Fundamentals and Applications, Springer Series in Synergetics, Springer-Verlag, Berlin, 2005.       
24 E. Gambetta and B. Perthame, Scaling limits for the Ruijgrok-Wu model of the Boltzmann equation, Math. Meth. in App. Sci., 24 (2001), 949-967.       
25 G. Grégoire, H. Chaté and Y. Tu, Moving and staying together without a leader, Physica D, 181 (2003), 157-170.       
26 G. Grégoire and H. Chaté, Onset of collective and cohesive motion, Phys. Rev. Lett., 92 (2004), 025702.
27 E. Gutkin and M. Kac, Propagation of chaos and the Burgers equation, SIAM J. Appl. Math., 43 (1983), 971-980.       
28 F. Hashemi, M.-O. Hongler and O. Gallay, Spatio-temporal patterns for a generalized innovation diffusion model, Theor. Econ. Lett., 2 (2012), 1-9.
29 D. Helbing, Traffic Flow: Encyclopedia of Nonlinear Science, Routledge, New York, 2005.
30 P. C. Hemmer, On a generalization of Smoluchowski's diffusion equation, Physica, 27 (1961), 79-82.       
31 M.-O. Hongler and R. Filliger, Mesoscopic derivation of a fundamental diagram of one-lane traffic, Phys. Lett. A, 301 (2002), 408-412.       
32 M.-O. Hongler and L. Streit, A probabilistic connection between the Burger and a discrete Boltzmann equation, Europhys. Lett., 12 (1990), 193-197.
33 M.-O. Hongler, O. Gallay, M. Hülsmann, P. Cordes and R. Colmorn, Centralized versus decentralized control - A solvable stylized model in transportation, Phys. A, 389 (2010), 4162-4171.
34 T. Ihle, Kinetic theory of flocking: Derivation of hydrodynamic equations, Phys. Rev E, 83 (2011), 030901, 4 pp.
35 M. Kac, A stochastic model related to the telegrapher's equation, Rocky Mount. J. Math., 4 (1974), 497-509.       
36 P. D. Lorch, G. A. Sword, D. T. Gwynne and G. L. Anderson, Radiotelemetry reveals differences in individual movement patterns between outbreak and non-outbreak Mormon cricket populations, Ecol. Entom., 30 (2005), 548-555.
37 F. Lutscher and A. Stevens, Emerging patterns in a hyperbolic model for locally interacting cell systems, J. Nonlin. Sci., 12 (2002), 619-640.       
38 R. J. LeVeque, Lectures in Mathematics ETHZ, Birkhäuser, Basel, 1999.
39 H. P. McKean, Jr., Propagation of chaos for a class of non-linear parabolic equations, in Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967), Air Force Office Sci. Res., Arlington, Va., 1967, 41-57.       
40 K. Nishihara, A note on the stability of travelling wave solutions of Burgers' equation, Jap. J. Appl. Math., 2 (1985), 27-35.       
41 S. Pal and J. Pitman, One-dimensional Brownian particle systems with rank-dependent drifts, Ann. of App. Prob., 18 (2008), 2179-2207.       
42 A. Peshkov, S. Ngo, E. Bertin, H. Chaté and F. Ginelli, Continuous theory of active matter systems with metric-free interactions, Phys. Rev. Lett., 109 (2012), 098101, 6 pp.
43 S. Ramaswamy, The mechanics and statistics of active matter, Ann. Rev. of Cond. Matt. Phys., 1 (2010), 323-345.
44 P. Romanczuk, I. D. Couzin, L. Schimansky-Geier, Collective motion due to individual escape and pursuit response, Phys. Rev. Lett., 102 (2009), 010602, 4 pp.
45 T. W. Ruijgrok and T. T. Wu, A completely solvable model of the nonlinear Boltzmann equation, Physica A, 113 (1982), 401-416.       
46 D. Strömbom, Collective motion from local attraction, J. Theor Biol., 283 (2011), 145-151.       
47 J. Toner and Y. Tu, Flocks, herds, and schools: A quantitative theory of flocking, Phys. Rev. E (3), 58 (1998), 4828-4858.       
48 T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Schochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.

Go to top