`a`
Mathematical Biosciences and Engineering (MBE)
 

Gauss-diffusion processes for modeling the dynamics of a couple of interacting neurons
Pages: 189 - 201, Issue 2, April 2014

doi:10.3934/mbe.2014.11.189      Abstract        References        Full text (594.6K)                  Related Articles

Aniello Buonocore - Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università di Napoli Federico II, Via Cintia, 80126 Napoli, Italy (email)
Luigia Caputo - Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università di Napoli Federico II, Via Cintia, 80126 Napoli, Italy (email)
Enrica Pirozzi - Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università di Napoli Federico II, Via Cintia, 80126 Napoli, Italy (email)
Maria Francesca Carfora - Istituto per le Appplicazioni del Calcolo "Mauro Picone", Consiglio Nazionale delle Ricerche, Via Pietro Castellino, Napoli, Italy (email)

1 K. Amemori and S. Ishii, Gaussian process approach to spiking neurons for inhomogeneous Poisson inputs, Neural Comp., 13 (2001), 2763-2797.
2 A. Buonocore, A. G. Nobile and L. M. Ricciardi, A new integral equation for evaluation of first-passage-time probability densities, Advances in Applied Probability, 19 (1987), 784-990.       
3 A. Buonocore, L. Caputo, E. Pirozzi and L. M. Ricciardi, On a stochastic leaky integrate-and-fire neuronal model, Neural Comput., 22 (2010), 2558-2585.       
4 A. Buonocore, L. Caputo, E. Pirozzi and L. M. Ricciardi, The first passage time problem for gauss-diffusion processes: Algorithmic approaches and applications to lif neuronal model, Methodol. Comput. Appl. Probab., 13 (2011), 29-57.       
5 A. N. Burkitt, A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input, Biol. Cybern., 95 (2006), 1-19.       
6 A. Di Crescenzo, B. Martinucci and E. Pirozzi, Feedback effects in simulated Stein's coupled neurons, in Computer Aided Systems Theory – EUROCAST 2005, Lecture Notes in Computer Science, 3643, Springer, Berlin-Heidelberg, 2005, 436-446.
7 A. Di Crescenzo, B. Martinucci and E. Pirozzi, On the dynamics of a pair of coupled neurons subject to alternating input rates, BioSystems, 79 (2005), 109-116.
8 E. Di Nardo, A. G. Nobile, E. Pirozzi and L. M. Ricciardi, A computational approach to first-passage-time problems for Gauss-Markov processes, Adv. Appl. Prob., 33 (2001), 453-482.       
9 Y. Dong, F. Mihalas and E. Niebur, Improved integral equation solution for the first passage time of leaky integrate-and-fire neurons, Neural Computation, 23 (2011), 421-434.       
10 V. Giorno, A. G. Nobile and L. M. Ricciardi, On the asymptotic behaviour of first-passage-time densities for one-dimensional diffusion processes and varying boundaries, Adv. Appl. Prob., 22 (1990), 883-914.       
11 D. Golomb and G. B. Ermentrout, Bistability in pulse propagation in networks of excitatory and inhibitory populations, Phys. Rev. Lett., 68 (2001), 4179-4182.
12 A. G. Nobile, E. Pirozzi and L. M. Ricciardi, On the estimation of first-passage time densities for a class of Gauss-Markov processes, in Computer Aided Systems Theory – EUROCAST 2007, Lecture Notes in Computer Science, 4739, Springer, Berlin-Heidelberg, 2007, 146-153.
13 A. G. Nobile, E. Pirozzi and L. M. Ricciardi. Asymptotics and evaluations of fpt densities through varying boundaries for Gauss-Markov processes, Scientiae Mathematicae Japonicae, 67 (2008), 241-266. Available from: http://www.jams.or.jp/scm/contents/e-2008-2/2008-12.pdf.       
14 A. Politi and S. Luccioli, Dynamics of networks of leaky-integrate-and-fire neurons, in Network Science, Springer, London, 2010, 217-242.
15 L. Sacerdote, M. Tamborrino and C. Zucca, Detecting dependencies between spike trains of pairs of neurons through copulas, Brain Research, 1434 (2012), 243-256.
16 H. Sakaguchi, Oscillatory phase transition and pulse propagation in noisy integrate-and-fire neurons, Phys. Rev. E., 70 (2004), 1-4.
17 H. Sakaguchi and S. Tobiishi, Synchronization and spindle oscillation in noisy integrate-and-fire-or-burst neurons with inhibitory coupling, Progress of Theoretical Physics, 114 (2005), 1-18.
18 R. Sirovich, L. Sacerdote and A. E. P. Villa, Effect of increasing inhibitory inputs on information processing within a small network of spiking neurons, in Computational and Ambient Intelligence, Lecture Notes in Computer Science, 4507, Springer, Berlin-Heidelberg, 2007, 23-30.
19 H. Soula and C. C. Chow, Stochastic dynamics of a finite-size spiking neural network, Neural Comput., 19 (2007), 3262-3292.       

Go to top