`a`
Advances in Mathematics of Communications (AMC)
 

On the dual of (non)-weakly regular bent functions and self-dual bent functions
Pages: 425 - 440, Issue 4, November 2013

doi:10.3934/amc.2013.7.425      Abstract        References        Full text (390.8K)           Related Articles

Ayça Çeşmelioǧlu - Faculty of Mathematics, Otto-von-Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany (email)
Wilfried Meidl - MDBF, Sabanci University, Orhanlı, Tuzla 34956, İstanbul, Turkey (email)
Alexander Pott - Faculty of Mathematics, Otto-von-Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany (email)

1 C. Carlet, On the secondary constructions of resilient and bent functions, in Coding, Cryptography and Combinatorics, Birkhäuser Basel, 2004, 3-28.       
2 C. Carlet, P. Charpin and V. Zinoviev, Codes, bent functions and permutations suitable for DES-like cryptosystems, Des. Codes Cryptogr., 15 (1998), 125-156.       
3 C. Carlet, L. E. Danielsen, M. G. Parker and P. Solé, Self-dual bent functions, Int. J. Inform. Coding Theory, 1 (2010), 384-399.       
4 C. Carlet, H. Dobbertin and G. Leander, Normal extensions of bent functions, IEEE Trans. Inform. Theory, 50 (2004), 2880-2885.       
5 A. Çeşmelioǧlu, G. McGuire and W. Meidl, A construction of weakly and non-weakly regular bent functions, J. Comb. Theory Ser. A, 119 (2012), 420-429.       
6 A. Çeşmelioǧlu and W. Meidl, A construction of bent functions from plateaued functions, Des. Codes Cryptogr., 66 (2013), 231-242.       
7 Y. M. Chee, Y. Tan and X. D. Zhang, Strongly regular graphs constructed from $p$-ary bent functions, J. Algebr. Comb., 34 (2011), 251-266.       
8 Y. Edel and A. Pott, On the equivalence of nonlinear functions, in NATO Advanced Research Workshop on Enhancing Cryptographic Primitives with Techniques from Error Correcting Codes, Amsterdam, 2009, 87-103.       
9 K. Garaschuk and P. Lisoněk, On ternary Kloosterman sums modulo 12, Finite Fields Appl., 14 (2008), 1083-1090.       
10 F. Göloǧlu, G. McGuire and R. Moloney, Ternary Kloosterman sums modulo $18$ using Stickelberger's theorem, in Proceedings of SETA 2010 (eds. C. Carlet and A. Pott), Springer-Verlag, Berlin, 2010, 196-203.       
11 T. Helleseth and A. Kholosha, Monomial and quadratic bent functions over the finite fields of odd characteristic, IEEE Trans. Inform. Theory, 52 (2006), 2018-2032.       
12 T. Helleseth and A. Kholosha, New binomial bent functions over the finite fields of odd characteristic, IEEE Trans. Inform. Theory, 56 (2010), 4646-4652.       
13 T. Helleseth and A. Kholosha, Crosscorrelation of m-sequences, exponential sums, bent functions and Jacobsthal sums, Cryptogr. Commun., 3 (2011), 281-291.       
14 X. D. Hou, Classification of self dual quadratic bent functions, Des. Codes Cryptogr., 63 (2012), 183-198.       
15 K. P. Kononen, M. J. Rinta-aho and K. O. Väänänen, On integer values of Kloosterman sums, IEEE Trans. Inform. Theory, 56 (2010), 4011-4013.       
16 N. G. Leander, Monomial bent functions, IEEE Trans. Inform. Theory, 52 (2006), 738-743.       
17 R. Lidl and H. Niederreiter, Finite Fields, Second edition, Cambridge Univ. Press, Cambridge, 1997.       
18 Y. Tan, A. Pott and T. Feng, Strongly regular graphs associated with ternary bent functions, J. Comb. Theory Ser. A, 117 (2010), 668-682.       
19 Y. Tan, J. Yang and X. Zhang, A recursive approach to construct $p$-ary bent functions which are not weakly regular, in Proceedings of IEEE International Conference on Information Theory and Information Security, Beijing, 2010, 156-159.

Go to top