Mathematical Biosciences and Engineering (MBE)

Structural phase transitions in neural networks
Pages: 139 - 148, Issue 1, February 2014

doi:10.3934/mbe.2014.11.139      Abstract        References        Full text (307.3K)           Related Articles

Tatyana S. Turova - Mathematical Center, University of Lund, Box 118, Lund S-221 00, Sweden (email)

1 M. Abeles, "Local Cortical Circuits: An Electrophysiological Study," Studies of Brain Function, Springer-Verlag, Berlin-Heidelberg-New York, 1982.
2 M. Abeles, "Corticonics: Neural Circuits of the Cerebral Cortex," First edition, Cambridge University Press, Cambridge, 1991.
3 I. Ayzenshtat, E. Meirovithz, H. Edelman, U. Werner-Reiss, E. Bienenstock, M. Abeles and H. Slovin, Precise spatiotemporal patterns among visual cortical areas and their relation to visual stimulus processing. J. Neurosci., 30 (2010), 11232-11245.
4 E. Bienenstock, A model of neocortex, Network, 6 (1995), 179-224.
5 J.-P. Eckmann, E. Moses, O. Stetter, T. Tlusty and C. Zbinden, Leaders of neuronal cultures in a quorum percolation model, Front. Comput. Neurosci., 4 (2010), 132.
6 I. R. Fiete, W. Senn, C. Z. H. Wang and R. H. R. Hahnloser, Spike-time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity, Neuron., 65 (2010), 563-576.
7 W. J. Freeman, "Mass Action in the Nervous System: Examination of the Neurophysiological Basis of Adaptive Behavior through the EEG," Academic Press, New York-San Francisco-London, 1975.
8 T. E. Harris, "The Theory of Branching Processes," Die Grundlehren der Mathematischen Wissenschaften, Bd. 119, Springer-Verlag, Berlin; Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963.       
9 R. H. Hahnloser, A. A. Kozhevnikov and M. S. Fee, An ultra-sparse code underlies the generation of neural sequences in a songbird, Nature, 419 (2002), 65-70.
10 J. Hertz and A. Prgel-Bennet, Learning synfire-chains by self-organization, Network, 7 (1996), 357-363.
11 J. Iglesias and A. E. Villa, Emergence of preferred firing sequences in large spiking neural networks during simulated neuronal development, Int. J. Neural Syst., 18 (2008), 267-277.
12 J. Iglesias and A. E. Villa, Effect of stimulus-driven pruning on the detection of spatiotemporal patterns of activity in large neural networks, Biosystems, 89 (2007), 287-293.
13 S. Janson, T. Luczak, T. Turova and T. Vallier, Bootstrap percolation on the random graph $G_{n,p}$, Annals of Applied Probability, 22 (2012), 1989-2047.       
14 R. Kozma, M. Puljic, P. Balister, B. Bollob├ís and W. Freeman, Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions, Biol. Cybernet., 92 (2005), 367-379.       
15 S. Kunkel, M. Diesmann and A. Morrison, Limits to the development of feed-forward structures in large recurrent neuronal networks, Frontiers in Computational Neuroscience, 4 (2011).
16 R. Mooney and J. F. Prather, The HVC microcircuit: The synaptic basis for interactions between song motor and vocal plasticity pathways, J. Neurosci., 25 (2005), 1952-1964.
17 G. Mongillo, O. Barak and M. Tsodyks, Synaptic theory of working memory, Science, 319 (2008), 1543-1546.
18 J. Montgomery and D. Madison, Discrete synaptic states define a major mechanism of synapse plasticity, Trends in Neurosciences, 27 (2004), 744-750.
19 Y. Prut, E. Vaadia, H. Bergman, I. Haalman, S. Hamutal and M. Abeles, Spatiotemporal structure of cortical activity: Properties and behavioral relevance, J. Neurophysiol., 79 (1998), 2857-2874.
20 M. Puljic and R. Kozma, Activation clustering in neural and social networks, Complexity, 10 (2005), 42-50.       
21 E. T. Rolls and A. Treves, The neuronal encoding of information in the brain, Progress in Neurobiology, 95 (2011), 448-490.
22 E. T. Rolls, "Memory, Attention, and Decision-Making. A Unifying Computational Neuroscience Approach," Oxford University Press, Oxford, 2008.
23 C. Trengove, C. van Leeuwen and M. Diesmann, High-capacity embedding of synfire chains in a cortical network model, J. Comput. Neurosci., 34 (2012), 185-209.
24 T. S. Turova, The emergence of connectivity in neuronal networks: From bootstrap percolation to auto-associative memory, Brain Research, 1434 (2012), 277-284.
25 T. Turova and A. Villa, On a phase diagram for random neural networks with embedded spike timing dependent plasticity, BioSystems, 89 (2007), 280-286.
26 A. E. P. Villa, I. V. Tetko, B. Hyland and A. Najem, Spatiotemporal activity patterns of rat cortical neurons predict responses in a conditioned task, Proc. Natl. Acad. Sci. U.S.A., 96 (1999), 1106-1111.
27 A. Waddington, P. A. Appleby, M. De Kamps and N. Cohen, Triphasic spike-timing-dependent plasticity organizes networks to produce robust sequences of neural activity, Frontiers in computational Neuroscience, 6 (2012).

Go to top