Mathematical Biosciences and Engineering (MBE)

Diffusion approximation of neuronal models revisited
Pages: 11 - 25, Issue 1, February 2014

doi:10.3934/mbe.2014.11.11      Abstract        References        Full text (471.9K)           Related Articles

Jakub Cupera - Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic (email)

1 J. M. Bower and D. Beeman, "The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural Simulation System," Springer-Verlag, New York, 1998.
2 S. Ditlevsen and P. Lansky, Estimation of the input parameters in the Feller neuronal model, Phys. Rev. E (3), 73 (2006), 061910, 9 pp.       
3 L. C. Giancarlo, M. Giugliano, W. Senn and S. Fusi, The response of cortical neurons to in vivo-like input current: Theory and experiment, Biol. Cybern., 99 (2008), 279-301.
4 F. B. Hanson and H. C. Tuckwell, Diffusion approximations for neuronal activity including synaptic reversal potentials, J. Theor. Neurobiol., 2 (1983), 127-153.
5 A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117 (1952), 500-544.
6 C. Koch and I. Segev, "Methods in Neuronal Modeling: From Synapses to Networks," Mass. MIT Press, Cambridge, 1989.
7 L. Kostal, Approximate information capacity of the perfect integrate-and-fire neuron using the temporal code, Brain Res., 1434 (2012), 136-141.
8 V. Lanska and P. Lansky and C. E. Smith, Synaptic transmission in a diffusion model for neural activity, J. Theor. Biol., 166 (1994), 393-406.
9 P. Lansky, On approximations of Stein's neuronal model, J. Theor. Biol., 107 (1984), 631-647.
10 P. Lánský and V. Lánská, Diffusion approximation of the neuronal model with synaptic reversal potentials, Biol. Cybern., 56 (1987), 19-26.       
11 P. Lánský, L. Sacerdote and F. Tomassetti, On the comparison of Feller and Ornstein-Uhlenbeck models for neural activity, Biol. Cybern., 73 (1995), 457-465.
12 M. Musila and P. Lánský, Generalized Stein's model for anatomically complex neurons, Biosystems, 25 (1991), 179-191.
13 M. Musila and P. Lánský, On the interspike intervals calculated from diffusion approximations of Stein's neuronal model with reversal potentials, J. Theor. Biol., 171 (1994), 225-232.
14 L. M. Ricciardi, "Diffusion Processes and Related Topics in Biology," Notes taken by Charles E. Smith, Lecture Notes in Biomathematics, Vol. 14, Springer-Verlag, Berlin-New York, 1977.       
15 L. M. Ricciardi and L. Sacerdote, Ornstein-Uhlenbeck process as a model for neuronal activity, Biol. Cybern., 35 (1979), 1-9.
16 M. J. E. Richardson, Firing-rate response of linear and nonlinear integrate-and-fire neurons to modulated current-based and conductance-based synaptic drive, Phys. Rev. E, 76 (2007), 021919.
17 H. Risken, "The Fokker-Planck Equation: Methods of Solution and Applications," Springer Series in Synergetics, 18, Springer-Verlag, Berlin, 1989.       
18 M. Rudolph and A. Destexhe, An extended analytic expression for the membrane potential distribution of conductance-based synaptic noise, Neural Comput., 17 (2005), 2301-2315.       
19 R. F. Schmidt, "Fundamentals of Neurophysiology," Springer-Verlag, Berlin, 1978.
20 C. E. Smith and M. W. Smith, Moments of voltage trajectories for Stein's model with synaptic reversal potentials, J. Theor. Neurobiol., 3 (1984), 67-77.
21 R. B. Stein, A theoretical analysis of neuronal variability, Biophys. J., 5 (1965), 173-194.
22 H. C. Tuckwell, Synaptic transmission in a model for stochastic neural activity, J. Theor. Biol., 77 (1979), 65-81.
23 H. C. Tuckwell and D. K. Cope, Accuracy of neuronal interspike times calculated from a diffusion approximation, J. Theor. Biol., 83 (1980), 377-387.
24 H. C. Tuckwell and P. Lánský, On the simulation of biological diffusion processes, Comput. Biol. Med., 27 (1997), 1-7.
25 W. J. Wilbur and J. Rinzel, A theoretical basis for large coefficient of variation and bimodality in neuronal interspike interval distributions, J. Theor. Biol., 105 (1983), 345-368.

Go to top