A simple algorithm to generate firing times for leaky integrateandfire neuronal model
Pages: 1  10,
Issue 1,
February
2014
doi:10.3934/mbe.2014.11.1 Abstract
References
Full text (492.4K)
Related Articles
Aniello Buonocore  Dipartimento di Matematica e Applicazioni, Università di Napoli Federico II, Via Cintia, Napoli, Italy (email)
Luigia Caputo  Dipartimento di Matematica e Applicazioni, Università di Napoli Federico II, Via Cintia, Napoli, Italy (email)
Enrica Pirozzi  Dipartimento di Matematica e Applicazioni, Università di Napoli Federico II, Via Cintia, Napoli, Italy (email)
Maria Francesca Carfora  Istituto per le Appplicazioni del Calcolo "Mauro Picone", Consiglio Nazionale delle Ricerche, Via Pietro Castellino, Napoli, Italy (email)
1 
A. Buonocore, A. G. Nobile and L. M. Ricciardi, A new integral equation for the evaluation of firstpassagetime probability densities, Advances in Applied Probability, 19 (1987), 784800. 

2 
A. N. Burkitt, A review of the integrateandfire neuron model. I. Homogeneous synaptic input, Biological Cybernetics, 95 (2006), 119. 

3 
E. Di Nardo, A. G. Nobile, E. Pirozzi and L. M. Ricciardi, A computational approach to the firstpassagetime problems for GaussMarkov processes, Advances in Applied Probability, 33 (2001), 453482. 

4 
Y. Dong, S. Mihalas and E. Niebur, Improved integral equation solution for the first passage time of leaky integrateandfire neurons, Neural Computation, 23 (2011), 421434. 

5 
V. Giorno, A. G. Nobile, L. M. Ricciardi and S. Sato, On the evaluation of firstpassagetime probability densities via nonsingular integral equations, Advances in Applied Probability, 21 (1989), 2036. 

6 
M. T. Giraudo and L. Sacerdote, Simulation methods in neuronal modelling, Biosystems, 48 (1998), 7783. 

7 
M. T. Giraudo and L. Sacerdote, An improved technique for the simulation of first passage times for diffusion processes, Communications in StatisticsSimulation and Computation, 28 (1999), 11351163. 

8 
M. T. Giraudo, L. Sacerdote and C. Zucca, A Monte Carlo method for the simulation of first passage times of diffusion processes, Methodology and Computing in Applied Probability, 3 (2001), 215231. 

9 
R. Gutiérrez Jáimez, P. Román Román and F. Torres Ruiz, A note on the Volterra integral equation for the first passage time probability density, Journal of Applied Probability, 32 (1995), 635648. 

10 
P. E. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations,'' Applications of Mathematics (New York), 23, SpringerVerlag, Berlin, 1992. 

11 
P. Lánský and V. Lánská, Firstpassagetime problem for simulated stochastic diffusion processes, Computers in Biology and Medicine, 24 (1994), 91101. 

12 
P. Lánský, P. Sanda and J. He, The parameters of the stochastic leaky integrateandfire neuronal model, Journal of Computational Neuroscience, 21 (2006), 211223. 

13 
A. G. Nobile, L. M. Ricciardi and L. Sacerdote, Exponential trends of OrnsteinUhlenbeck firstpassagetime densities, Journal of Applied Probability, 22 (1985), 360369. 

14 
L. M. Ricciardi, On the transformation of diffusion processes into the Wiener process, Journal of Mathematical Analysis and Applications, 54 (1976), 185199. 

15 
S. M. Ross, "Introduction to the Probability Models,'' Academic Press, Elsevier, 2007. 

16 
S. Shinomoto, Y. Sakai and S. Funahashi, The OrnsteinUhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex, Neural Computation, 11 (1999), 935951. 

17 
T. Taillefumier and M. O. Magnasco, A fast algorithm for the firstpassage times of GaussMarkov processes with Hölder continuous boundaries, Journal of Statistical Physics, 140 (2010), 11301156. 

18 
H. C. Tuckwell and D. K. Cope, Accuracy of neuronal interspike times calculated from a diffusion approximation, Journal of Theoretical Biology, 83 (1980), 377387. 

19 
H. C. Tuckwell, "Introduction to Theoretical Neurobiology. Vol. 2. Nonlinear and Stochastic Theories," Cambridge Studies in Mathematical Biology, 8, Cambridge University Press, Cambridge, 1988. 

Go to top
