`a`
Mathematical Biosciences and Engineering (MBE)
 

A simple algorithm to generate firing times for leaky integrate-and-fire neuronal model
Pages: 1 - 10, Issue 1, February 2014

doi:10.3934/mbe.2014.11.1      Abstract        References        Full text (492.4K)           Related Articles

Aniello Buonocore - Dipartimento di Matematica e Applicazioni, Università di Napoli Federico II, Via Cintia, Napoli, Italy (email)
Luigia Caputo - Dipartimento di Matematica e Applicazioni, Università di Napoli Federico II, Via Cintia, Napoli, Italy (email)
Enrica Pirozzi - Dipartimento di Matematica e Applicazioni, Università di Napoli Federico II, Via Cintia, Napoli, Italy (email)
Maria Francesca Carfora - Istituto per le Appplicazioni del Calcolo "Mauro Picone", Consiglio Nazionale delle Ricerche, Via Pietro Castellino, Napoli, Italy (email)

1 A. Buonocore, A. G. Nobile and L. M. Ricciardi, A new integral equation for the evaluation of first-passage-time probability densities, Advances in Applied Probability, 19 (1987), 784-800.       
2 A. N. Burkitt, A review of the integrate-and-fire neuron model. I. Homogeneous synaptic input, Biological Cybernetics, 95 (2006), 1-19.       
3 E. Di Nardo, A. G. Nobile, E. Pirozzi and L. M. Ricciardi, A computational approach to the first-passage-time problems for Gauss-Markov processes, Advances in Applied Probability, 33 (2001), 453-482.       
4 Y. Dong, S. Mihalas and E. Niebur, Improved integral equation solution for the first passage time of leaky integrate-and-fire neurons, Neural Computation, 23 (2011), 421-434.       
5 V. Giorno, A. G. Nobile, L. M. Ricciardi and S. Sato, On the evaluation of first-passage-time probability densities via non-singular integral equations, Advances in Applied Probability, 21 (1989), 20-36.       
6 M. T. Giraudo and L. Sacerdote, Simulation methods in neuronal modelling, Biosystems, 48 (1998), 77-83.
7 M. T. Giraudo and L. Sacerdote, An improved technique for the simulation of first passage times for diffusion processes, Communications in Statistics-Simulation and Computation, 28 (1999), 1135-1163.       
8 M. T. Giraudo, L. Sacerdote and C. Zucca, A Monte Carlo method for the simulation of first passage times of diffusion processes, Methodology and Computing in Applied Probability, 3 (2001), 215-231.       
9 R. Gutiérrez Jáimez, P. Román Román and F. Torres Ruiz, A note on the Volterra integral equation for the first passage time probability density, Journal of Applied Probability, 32 (1995), 635-648.       
10 P. E. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations,'' Applications of Mathematics (New York), 23, Springer-Verlag, Berlin, 1992.       
11 P. Lánský and V. Lánská, First-passage-time problem for simulated stochastic diffusion processes, Computers in Biology and Medicine, 24 (1994), 91-101.
12 P. Lánský, P. Sanda and J. He, The parameters of the stochastic leaky integrate-and-fire neuronal model, Journal of Computational Neuroscience, 21 (2006), 211-223.       
13 A. G. Nobile, L. M. Ricciardi and L. Sacerdote, Exponential trends of Ornstein-Uhlenbeck first-passage-time densities, Journal of Applied Probability, 22 (1985), 360-369.       
14 L. M. Ricciardi, On the transformation of diffusion processes into the Wiener process, Journal of Mathematical Analysis and Applications, 54 (1976), 185-199.       
15 S. M. Ross, "Introduction to the Probability Models,'' Academic Press, Elsevier, 2007.
16 S. Shinomoto, Y. Sakai and S. Funahashi, The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex, Neural Computation, 11 (1999), 935-951.
17 T. Taillefumier and M. O. Magnasco, A fast algorithm for the first-passage times of Gauss-Markov processes with Hölder continuous boundaries, Journal of Statistical Physics, 140 (2010), 1130-1156.       
18 H. C. Tuckwell and D. K. Cope, Accuracy of neuronal interspike times calculated from a diffusion approximation, Journal of Theoretical Biology, 83 (1980), 377-387.
19 H. C. Tuckwell, "Introduction to Theoretical Neurobiology. Vol. 2. Nonlinear and Stochastic Theories," Cambridge Studies in Mathematical Biology, 8, Cambridge University Press, Cambridge, 1988.       

Go to top