`a`
Mathematical Biosciences and Engineering (MBE)
 

Optimal isolation strategies of emerging infectious diseases with limited resources
Pages: 1691 - 1701, Issue 5/6, October/December 2013

doi:10.3934/mbe.2013.10.1691      Abstract        References        Full text (369.9K)                  Related Articles

Yinggao Zhou - School of Mathematics and Statistics, Central South University, Changsha, Hunan 410083, China (email)
Jianhong Wu - Centre for Disease Modeling, York University, 4700 Keele Street, Toronto, ON M3J1P3, Canada (email)
Min Wu - School of Information Science and Engineering, Central South University, Changsha, Hunan 410083, China (email)

1 A. Abakuks, "Optimal Policies for Epidemics," D. Phil. Thesis, Univ. Of Sussex, 1972.
2 A. Abakuks, An optimal isolation policy for an epidemic, J. Appl. Probability, 10 (1973), 247-262.       
3 A. Abakuks, Optimal immunization policies for epidemics, Adv. Appl. Probability, 6 (1974), 494-511.       
4 R. M. Anderson and R. M. May, "Infectious Diseases of Humans: Dynamics and Control," Oxford Science Publications, Oxford, 1991.
5 H. Behncke, Optimal control of deterministic epidemics, Opt. Control Appl. Methods, 21 (2000), 269-285.       
6 M. C. J. Bootsma and N. M. Ferguson, The effect of public health measures on the 1918 influenza pandemic in U.S. cities, PNAS, 104 (2007), 7588-7593.
7 C. B. Bridges, M. J. Kuehnert and C. B. Hall, Transmission of influenza: Implications for control in health care settings, Clin. Infect. Dis., 37 (2003), 1094-1101.
8 E. Bryson and Y. Ho, "Applied Optimal Control-Optimization, Estimation, and Control," Taylor & Francis, New York, London, 1975.       
9 F. Carrat, J. Luong and H. Lao, A.-V. Sallé, C. Lajaunie and H. Wackernagel, A 'smallworld-like' model for comparing interventions aimed at preventing and controlling influenza pandemics, BMC Medicine, 4 (2006).
10 S. Cauchemez, F. Carrat, C. Viboud, A. J. Valleron and P. Y. Boëlle, A Bayesian MCMC approach to study transmission of influenza: Application to household longitudinal data, Stat. Med., 23 (2004), 3469-3487.
11 G. Chowell, C. E. Ammon, N. W. Hengartner and J. M. Hyman, Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: Assessing the effects of hypothetical intervention, J. Theor. Bio., 241 (2005), 193-204.       
12 G. Chowell, H. Nishiura and L. M. A. Bettencourt, Comparative estimation of the reproduction number for pandemic influenza from daily case notification data, J. R. Soc. Interface, 4 (2006), 155-166.
13 D. Clancy, Optimal intervention for epidemic models with general infection and removal rate functions, J. Math. Biol., 39 (1999), 309-331.       
14 B. Cooper, Poxy models and rash decisions, PNAS, 103 (2006), 12221-12222.
15 J. Dushoff, J. B. Plotkin, S. A. Levin and D. J. D. Earn, Dynamical resonance can account for seasonality of influenza epidemics, PNAS, 101 (2004), 16915-16916.
16 B. D. Elderd, V. M. Dukic and G. Dwyer, Uncertainty in predictions of diseases spread and public health responses to bioterrorism and emerging diseases, PNAS, 103 (2006), 15639-15697.
17 N. M. Ferguson, D. A. T. Cummings and C. Fraser, et al., Strategies for mitigating an influenza pandemic, Nature, 442 (2006), 448-452.
18 H. P. Geering, "Optimal Control with Engineering Applications," Springer-Verlag, Berlin-Heidelberg, 2007.
19 R. J. Glass, L. M. Glass and W. E. Beyeler, et al., Targeted social distancing design for pandemic influenza, Emerg. Infect. Dis., 12 (2006), 1671-1681.
20 E. Hansen and T. Day, Optimal control of epidemics with limited resources, J. Math. Bio., 62 (2011), 423-451.       
21 D. Hull, "Optimal Control Theory for Applications," Mechanical Engineering Series, Springer-Verlag, New York, 2003.       
22 E. H. Kaplan, D. L. Craft and L. M. Wein, Emergency response to a smallpox attack: The case for mass vaccination, PNAS, 99 (2002), 10935-10940.
23 F. Lin, K. Muthuraman and M. Lawley, An optimal control theory approach to non-pharmaceutical interventions, BMC Infect. Dis., 10 (2010), 1-13.
24 M. Lipsitch, T. Cohen and B. Cooper, et al., Transmission dynamics of Severe Acute Respiratory Syndrome, Science, 300 (2003), 1966-1970.
25 I. M. Longini, M. E. Halloran and A. Nizam, et al., Containing pandemic influenza with antiviral agents, Am. J. Epidemiol., 159 (2004), 623-633.
26 I. M. Longini, A. Nizam and S. Xu, et al., Containing pandemic influenza at the source, Science, 309 (2005), 1083-1087.
27 H. Markel, A. M. Stern and J. A. Navarro, et al., Nonpharmaceutical influenza mitigation strategies, US communities, 1918-1920 pandemic, Emerg. Infect. Dis., 12 (2006), 1961-1964.
28 C. E. Mills, J. M. Robins and M. Lipsitch, Transmissibility of 1918 pandemic influenza, Nature, 432 (2004), 904-906.
29 R. Morton and K. H. Wickwire, On the optimal control of a deterministic epidemic, Adv. Appl. Probability, 6 (1974), 622-635.       
30 S. Riley, C. Fraser and C. A. Donnelly, et al., Transmission dynamics of the etiological agent of SARS in Hong Kong: Impact of public health intervention, Science, 300 (2003), 1961-1966.
31 S. Riley and N. M. Ferguson, Smallpox transmission and control: Spatial dynamics in Great Britain, PNAS, 103 (2007), 12637-12642.
32 S. P. Sethi and P. W. Staats, Optimal control of some simple deterministic epidemic models, J. Oper. Res. Soc., 29 (1978), 129-136.       
33 S. P. Sethi, Optimal quarantine programmes for controlling an epidemic spread, J. Oper. Res. Soc., 29 (1978), 265-268.       
34 T. Wai, G. Turinici and A. Danchin, A double epidemic model for the SARS propagation, BMC Infect. Dis., 3 (2003), 1-16.
35 H. J. Wearing, P. Rohani and M. J. Keeling, Appropriate models for the management of infectious diseases, PLoS Medicine, 2 (2005), 1532-1540.
36 R. J. Webby and R. G. Webster, Are we ready for pandemic influenza, Science, 302 (2003), 1519-1522.
37 K. H. Wickwire, Optimal isolation policies for deterministic and stochastic epidemics, Math. Biosci., 26 (1975), 325-346.       
38 J. T. Wu, S. Riley and C. Fraser, et al., Reducing the impact of the next influenza pandemic using household-based public health interventions, PLoS Medicine, 3 (2006), 1532-1540.

Go to top