Mathematical Biosciences and Engineering (MBE)

Michaelis-Menten kinetics, the operator-repressor system, and least squares approaches
Pages: 1541 - 1560, Issue 5/6, October/December 2013

doi:10.3934/mbe.2013.10.1541      Abstract        References        Full text (400.9K)                  Related Articles

Karl Peter Hadeler - Mathematics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany (email)

1 G. E. Briggs and J. B. S. Haldane, A note on the kinematics of enzyme action, Biochem. J., 19 (1925), 338-339.
2 K. P. Hadeler and D. Jukić, K. Sabo, Least squares problems for Michaelis-Menten kinetics, Math. Meth. Appl. Sci., 30 (2007), 1231-1241.       
3 M. W. Hirsch and H. L. Smith, Monotone dynamical systems, in "Handbook of Differential Equations, Vol. 2," Elsevier B. V., Amsterdam, (2006), 239-357       
4 M. C. Mackey, M. Tyran-Kaminska and R. Yvinec, Molecular distributions in gene regulatory dynamics, J. Theoretical Biology, 274 (2011), 84-96.       
5 L. Michaelis and M. L. Menten, Die kinetik der invertinwirkung, Biochem. Z., 49 (1913), 333-369.
6 L. Noethen and S. Walcher, Tikhonov's theorem and quasi-steady state, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 945-961.       
7 L. A. Segel and M. Slemrod, The quasi-steady-state assumption: A case study in perturbation, Thermochim. Acta, 31 (1989), 446-477.       
8 Gad Yail and Ezra Yagil, On the relation between effector concentration and the rate of induced enzyme synthesis, Biophysical Journal, 11 (1971), 11-27.

Go to top