Bifurcation analysis of a discrete SIS model with
bilinear incidence depending on new infection
Pages: 1399  1417,
Issue 5/6,
October/December
2013
doi:10.3934/mbe.2013.10.1399 Abstract
References
Full text (999.7K)
Related Articles
Hui Cao  Department of Mathematics, Shaanxi University of Science & Technology, Xi'an, 710021, China (email)
Yicang Zhou  Department of Mathematics, Xi'an Jiaotong University, Xi'an, 710049, China (email)
Zhien Ma  Department of Mathematics, Xi’an Jiaotong University, Xi’an, 710049, China (email)
1 
L. Allen, Some discretetime SI, SIR, and SIS epidemic models, Math. Biosci., 124 (1994), 83105. 

2 
L. Allen and A. Burgin, Comparison of deterministic and stochastic SIS and SIR models in discrete time, Math. Biosci., 163 (2000), 133. 

3 
L. Allen and P. van den Driessche, The basic reproduction number in some discretetime epidemic models, J. Differ. Equ. Appl., 14 (2008), 11271147. 

4 
R. Arreola, A. Crossa, M. C. Velasco and A. A. Yakubu, Discretetime SEIS models with exogenous reinfection and dispersal between two patches. Available from: http://mtbi.asu.edu/files/Discrete_time_SEIS_Models_with_Exogenous_Reinfection_and_Dispersal_between_Two_Patches.pdf. 

5 
W. J. Beyn and J. Lorenz, Center manifolds of dynamical systems under discretization, Numer. Funct. Anal. Optimiz., 9 (1987), 381414. 

6 
H. Cao, Z. Dou, X. Liu, F. Zhang, Y. Zhou and Z. Ma, The impact of antiretroviral therapy on the basic reproductive number of HIV transmission, Math. Model. Appl., 1 (2012), 3337. 

7 
H. Cao, Y. Xiao and Y. Zhou, The dynamics of a discrete SEIT model with age and infectionage structures, INT. J. Bio., 5 (2012), 6176. 

8 
H. Cao and Y. Zhou, The discrete agestructured SEIT model with application to tuberculosis transmission in China, Math. Comput. Model., 55 (2012), 385395. 

9 
H. Cao and Y. Zhou, The basic reproduction number of discrete SIR and SEIS models with periodic parameters, Discrete Cont. Dyn. Sys. B, 18 (2013), 3756. 

10 
H. Cao, Y. Zhou and B. Song, Complex dynamics of discrete SEIS models with simple demography, Discrete Dyn. Nat. Soc., (2011), Art. ID 653937, 21 pp. 

11 
C. CastilloChavez and A. A. Yakubu, Discretetime SIS models with complex dynamics, Nonliear Anal. TMA, 47 (2001), 47534762. 

12 
C. CastilloChavez and A. A. Yakubu, Discretetime SIS models with simple and complex population dynamics, in "Mathematical Approaches for Emerging and Reemerging Infectious Diseases: A introduction" (eds. C. CastilloChavez with S. Blower, P. van den Driessche, D. Kirschner and A. A. Yakubu), SpringerVerlag, New York, (2002), 153163. 

13 
C. Celik and O. Duman, Allee effect in a discretetime predatorprey system, Chaos Soliton. Fract., 40 (2009), 19561962. 

14 
J. E. Franke and A. A. Yakubu, Discretetime SIS epidemic model in a seasonal environment, SIAM J. Appl. Math., 66 (2006), 15631587. 

15 
P. A. Gonzalez, R. A. Saenz, B. N. Sanchez, C. CastilloChavez and A. A. Yakubu, Dispersal between two patches in a discrete time SEIS model, MTBI technical Report, 2000. 

16 
J. M. Grandmonet, Nonlinear difference equations, bifurcations and chaos: An introduction, Research in Economics, 62 (2008), 120177. 

17 
J. Guckenheimer and P. Holmes, "Nonlinear Oscilations, Dynamical Systems, and Bifurcations of Vector Fields," Springer, New York, 1983. 

18 
M. P. Hassell, Density dependence in singlespecies populations, J. Anim. Ecol., 44 (1975), 283289. 

19 
Z. Hu, Z. Teng and H. Jiang, Stability analysis in a class of discrete SIRS epidemic models, Nonlinear Anal. RWA, 13 (2012), 20172033. 

20 
Z. Hu, Z. Teng and L. Zhang, Stability and bifurcation analysis of a discrete predatorprey model with nonmonotonic functional response, Nonlinear Anal. RWA, 12 (2011), 23562377. 

21 
L. Li, G. Sun and Z. Jin, Bifurcation and chaos in an epidemic model with nonlinear incidence rates, Appl. Math. Comput., 216 (2010), 12261234. 

22 
X. Li and W. Wang, A discrete epidemic model with stage structure, Chaos Solution. Fract., 26 (2005), 947958. 

23 
R. M. May, Biological population obeying difference equations: Stable points, stable cycles, and chaos, J. Theor. Biol., 51 (1975), 511524. 

24 
R. M. May, Deterministic models with chaotic dynamics, Nature, 256 (1975), 165166. 

25 
R. M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459467. 

26 
H. R. Thieme, Covergence results and a PoincareBendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755763. 

27 
X. Q. Zhao, Asymptotic behavior for asymptotically periodic semiflows with applications, Comm. Appl. Nonl. Anal., 3 (1996), 4366. 

28 
Y. Zhou and H. Cao, Discrete tuberculosis transmission models and their application, in "A Survey of Mathematical Biology, Fields Communications Series" (ed. S. Sivaloganathan), 57, A copublication of the AMS and Fields Institute, Canada, (2010), 83112. 

29 
Y. Zhou, K. Khan, Z. Feng and J. Wu, Projection of tuberculosis incidence with increasing immigration trends, J. Theor. Biol., 254 (2008), 215228. 

30 
Y. Zhou and Z. Ma, Global stability of a class of discrete agestructured SIS models with immigration, Math. Biosci. Eng., 6 (2009), 409425. 

31 
Y. Zhou, Z. Ma and F. Brauer, A discrete epidemicmodel for SARS transmission and control in China, Math. Comput. Model., 40 (2004), 14911506. 

32 
Y. Zhou and F. Paolo, Dynamics of a discrete agestructured SIS models, Discrete Cont. Dyn. Sys. B, 4 (2004), 843852. 

Go to top
