Structure of approximate solutions of dynamic continuous time zerosum games
Pages: 153  179,
Issue 1,
January
2014
doi:10.3934/jdg.2014.1.153 Abstract
References
Full text (431.0K)
Related Articles
Alexander J. Zaslavski  Department of Mathematics, The TechnionIsrael Institute of Technology, 32000 Haifa, Israel (email)
1 
O. Alvarez and M. Bardi, Ergodic problems in differential games, in "Advances in Dynamic Game Theory," Ann. Internat. Soc. Dynam. Games, 9, Birkhäuser Boston, Boston, MA, (2007), 131152. 

2 
B. D. O. Anderson and J. B. Moore, "Linear Optimal Control," PrenticeHall, Inc., Englewood Cliffs, NJ, 1971. 

3 
J.P. Aubin and I. Ekeland, "Applied Nonlinear Analysis," Pure and Applied Mathematics (New York), A WileyInterscience Publication, John Wiley & Sons, Inc., New York, 1984. 

4 
S. Aubry and P. Y. Le Daeron, The discrete FrenkelKontorova model and its extensions. I. Exact results for the groundstates, Physica D, 8 (1983), 381422. 

5 
M. Bardi, On differential games with longtimeaverage cost, in "Advances in Dynamic Games and their Applications," Ann. Internat. Soc. Dynam. Games, 10, Birkhäuser Boston, Inc., Boston, MA, (2009), 318. 

6 
J. Baumeister, A. Leitäo and G. N. Silva, On the value function for nonautonomous optimal control problem with infinite horizon, Systems Control Lett., 56 (2007), 188196. 

7 
J. Blot and P. Cartigny, Optimality in infinitehorizon variational problems under sign conditions, J. Optim. Theory Appl., 106 (2000), 411419. 

8 
J. Blot and N. Hayek, Sufficient conditions for infinitehorizon calculus of variations problems, ESAIM Control Optim. Calc. Var., 5 (2000), 279292. 

9 
P. Cartigny and P. Michel, On a sufficient transversality condition for infinite horizon optimal control problems, Automatica J. IFAC, 39 (2003), 10071010. 

10 
L. Cesari, "OptimizationTheory and Applications. Problems with Ordinary Differential Equations," Applications of Mathematics (New York), 17, SpringerVerlag, New York, 1983. 

11 
I. V. Evstigneev and S. D. Flåm, Rapid growth paths in multivalued dynamical systems generated by homogeneous convex stochastic operators, SetValued Anal., 6 (1998), 6181. 

12 
D. Gale, On optimal development in a multisector economy, Rev. of Econ. Studies, 34 (1967), 119. 

13 
M. K. Ghosh and K. S. Mallikarjuna Rao, Differential games with ergodic payoff, SIAM J. Control Optim., 43 (2005), 20202035. 

14 
X. Guo and O. HernándezLerma, Zerosum continuoustime Markov games with unbounded transition and discounted payoff rates, Bernoulli, 11 (2005), 10091029. 

15 
H. JassoFuentes and O. HernándezLerma, Characterizations of overtaking optimality for controlled diffusion processes, Appl. Math. Optim., 57 (2008), 349369. 

16 
O. HernándezLerma and J. B. Lasserre, Zerosum stochastic games in Borel spaces: Average payoff criteria, SIAM J. Control Optim., 39 (2000), 15201539. 

17 
V. Kolokoltsov and W. Yang, The turnpike theorems for Markov games, Dynamic Games and Applications, 2 (2012), 294312. 

18 
A. Leizarowitz, Infinite horizon autonomous systems with unbounded cost, Appl. Math. and Opt., 13 (1985), 1943. 

19 
A. Leizarowitz and V. J. Mizel, One dimensional infinite horizon variational problems arising in continuum mechanics, Arch. Rational Mech. Anal., 106 (1989), 161194. 

20 
V. Lykina, S. Pickenhain and M. Wagner, Different interpretations of the improper integral objective in an infinite horizon control problem, J. Math. Anal. Appl., 340 (2008), 498510. 

21 
V. L. Makarov and A. M. Rubinov, "Mathematical Theory of Economic Dynamics and Equilibria," SpringerVerlag, New YorkHeidelberg, 1977. 

22 
M. Marcus and A. J. Zaslavski, The structure of extremals of a class of second order variational problems, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 16 (1999), 593629. 

23 
L. W. McKenzie, Turnpike theory, Econometrica, 44 (1976), 841865. 

24 
L. W. McKenzie, "Classical General Equilibrium Theory," MIT press, Cambridge, MA, 2002. 

25 
B. Sh. Mordukhovich, Minimax sythesis of a class of control systems with distributed parameters, Automat. Remote Control, 50 (1989), 13331340. 

26 
B. S. Mordukhovich and I. Shvartsman, Optimization and feedback control of constrained parabolic systems under uncertain perturbations, in "Optimal Control, Stabilization and Nonsmooth Analysis," Lecture Notes Control Inform. Sci., 301, Springer, Berlin, (2004), 121132. 

27 
S. Pickenhain, V. Lykina and M. Wagner, On the lower semicontinuity of functionals involving Lebesgue or improper Riemann integrals in infinite horizon optimal control problems, Control Cybernet, 37 (2008), 451468. 

28 
T. PrietoRumeau and O. HernándezLerma, Bias and overtaking equilibria for zerosum continuoustime Markov games, Math. Methods Oper. Res., 61 (2005), 437454. 

29 
P. A. Samuelson, A catenary turnpike theorem involving consumption and the golden rule, American Economic Review, 55 (1965), 486496. 

30 
C. C. von Weizsacker, Existence of optimal programs of accumulation for an infinite horizon, Rev. Econ. Studies, 32 (1965), 85104. 

31 
A. J. Zaslavski, Ground states in a model of FrenkelKontorova type, Math. USSRIzvestiya, 29 (1987), 323354. 

32 
A. J. Zaslavski, Optimal programs on infinite horizon. I, II, SIAM Journal on Control and Optimization, 3 (1995), 16431660, 16611686. 

33 
A. J. Zaslavski, Dynamic properties of optimal solutions of variational problems, Nonlinear Analysis, 27 (1996), 895931. 

34 
A. J. Zaslavski, Turnpike property for dynamic discrete time zerosum games, Abstract and Applied Analysis, 4 (1999), 2148. 

35 
A. J. Zaslavski, "Turnpike Properties in the Calculus of Variations and Optimal Control," Nonconvex Optimization and its Applications, 80, Springer, New York, 2006 . 

36 
A. J. Zaslavski, A turnpike result for a class of problems of the calculus of variations with extendedvalued integrands, J. Convex Analysis, 15 (2008), 869890. 

37 
A. J. Zaslavski, "Optimization on Metric and Normed Spaces," Springer Optimization and Its Applications, 44, Springer, New York, 2010. 

38 
A. J. Zaslavski, The existence and structure of approximate solutions of dynamic discrete time zerosum games, Journal of Nonlinear and Convex Analysis, 12 (2011), 4968. 

39 
A. J. Zaslavski and A. Leizarowitz, Optimal solutions of linear control systems with nonperiodic integrands, Mathematics of Operations Research, 22 (1997), 726746. 

Go to top
