Mathematical Biosciences and Engineering (MBE)

Modelling seasonal HFMD with the recessive infection in Shandong, China
Pages: 1159 - 1171, Issue 4, August 2013

doi:10.3934/mbe.2013.10.1159      Abstract        References        Full text (449.1K)           Related Articles

Yangjun Ma - Department of Mathematics, North University of China, Taiyuan, Shanxi 030051, China (email)
Maoxing Liu - Department of Mathematics, North University of China, Taiyuan, Shanxi 030051, China (email)
Qiang Hou - Department of Mathematics, North University of China, School of Mechatronic Engineering, North University of China, Taiyuan, Shanxi 030051, China (email)
Jinqing Zhao - Department of Mathematics, North University of China, Taiyuan, Shanxi 030051, China (email)

1 O. N. Bjornstad, B. F. Finkenstadt and B. T. Grenfell, Dynamics of measles epidemics: Estimating scaling of transmission rates using a time series SIR model, Ecol. Monogr., 72 (2002), 169-184.
2 N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421-436.       
3 N. Bacaër, Approximation of the basic reproduction number $R_{0}$ for vector-borne diseases with a periodic vector population, Bull. Math. Biol., 69 (2007), 1067-1091.       
4 CDC, "Hand, Foot, and Mouth Disease (HFMD)$-$About Hand, Foot, and Mouth (HFMD)," http://www.cdc.gov/hand-foot-mouth/about/index.html.
5 CDC, Notes from the Field: Severe Hand, Foot, and Mouth Disease Associated with Coxsackievirus A6-Alabama, Connecticut, California, and Nevada, November 2011-February 2012, http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6112a5.htm.
6 S. F. Dowell, Seasonal variation in host susceptibility and cycles of certain infectious diseases, Emerg. Infect. Dis., 7 (2001), 369-374.
7 J. Dushoff, J. B. Poltkin, S. A. Levin and D. J. D. Earn, Dynamical resonance can account for seasonality of influenza epidemics, Proc. Natl. Acad. Sci., 101 (2004), 16915-16916.
8 Z. Grossman, Oscillatory phenomena in a model of infectious diseases, Theory. Pop. Biol., 18 (1980), 204-243.       
9 J. L. Liu, Threshold dynamics for a HFMD epidemic model with periodic transmission rate, Nonlinear. Dyn., 64 (2011), 89-95.       
10 M. Y. Liu, W. Liu, J. Luo, Y. Liu, Y. Zhu, H. Berman and J. Wu, Characterization of an Outbreak of Hand, Foot, and Mouth Disease in Nanchang, China in 2010, PLoS ONE., 6 (2011), e25287.
11 W. London and J. A. Yorke, Recurrent outbreaks of measles, chickenpox and mumps.i.seasonal variation in contact rates, Am. J. Epidemiol., 98 (1973), 453-468.
12 J. Ma and Z. Ma, Epidemic threshold conditions for seasonally forced SEIR models, Math. Biosci. Eng., 3 (2006), 161-172.       
13 I. A. Moneim and D. Greenhalgh, Use of a periodic vaccination strategy to control the spread of epidemics with seasonally varying contact rate, Math. Biosci. Eng., 2 (2005), 591-611.       
14 Z. Ma, Y. Zhou, W. Wang and Z. Jin, "Mathematical Modeling and Studying of Dynamic Models of Infectious Disease," Science Press, London, 2004.
15 L. Perko, "Differential Equations and Dynamical System," Springer-Verlag, New York, 2000.
16 I. Schwartz, Small amplitude, long periodic out breaks in seasonally driven epidemics, J. Math. Biol., 30 (1992), 473-491.       
17 I. Schwartz and H. Smith, Infinite subharmonic bifurcation in an SIER epidemic model, J. Math. Biol., 18 (1983), 233-253.       
18 Shandong Statistical Information, http://www.stats-sd.gov.cn/2007/tjsj/tjsj.asp?lbbm=1.
19 F. C. S. Tiing and J. Labadin, A simple deterministic model for the spread of hand, foot and mouth disease (HFMD) in Sarawak, in "Second Asia International Conference on Modelling and Simulation," Conference Publications, (2008), 947-952.
20 M. Urashima, N. Shindo and N. Okable, Seasonal model of herpangina and hand-foot-mouth disease to simulate annual fluctuations in urban warming in Tokyo, Jpn. J. Infect. Dis., 56 (2003), 48-53.
21 WHO, Emerging disease surveillance and response, http://www.wpro.who.int/emerging_diseases/HFMD/en/index.html.
22 D. Wu, C. Ke, W. Li, M. Corina, J. Yan, C. Ma, H. Zen and J.Su, A large outbreak of hand, foot, and mouth disease caused by EV71 and CAV16 in Guangdong, China, 2009, Arch. Virol., 156 (2011), 945-953.
23 A. Weber, M. Weber and P. Milligan, Modeling epidemics caused by respiratory syncytial virus (RSV), Math. Biosci., 172 (2001), 95-113.       
24 L. J.White, J. N.Mandl, M. G. Gomes, A. T. Bodley-Tickell, P. A.Cane, P. Perez-Brena, J. C. Aguilar, M. M. Siqueira, S. A. Portes, S. M. Straliotto, M. Waris, D. J. Nokes and G. F. Medley, Understanding the transmissiondynamics of respiratorysyncytialvirus using multiple time series and nested models, Math. Biosci., 209 (2007), 222-239.       
25 W. Wang and X. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Biol. Dyn., 3 (2008), 699-717.
26 Q. Zhu, Y. T. Hao, J. Q. Ma , S. C. Yu and Y. Wang, Surveillance of Hand, Foot, and Mouth Disease in Mainland China (2008-2009), Biomed. Environ. Sci., 4 (2011), 349-356.
27 Y. Zhang, X. J. Tan, H. Y. Wang, D. M. Yan, S. L. Zhu, D. Y. Wang, F. Ji, X. J. Wang, Y. J. Gao, L. Chen, H. Q. An, D. X. Li, S. W. Wang, A. Q. Xu, Z. J. Wang and W. B. Xu, An outbreak of hand, foot, and mouth disease associated with subgenotype C4 of human enterovirus 71 in Shandong, China, J. Clin. Virol., 44 (2009), 262-267.
28 J. Zhang, Z. Jin, G.-Q. Sun, X.-D. Sun and S. Ruan, Modeling seasonal rabies epidemics in China, Bull. Math. Biol., 74 (2012), 1226-1251.       
29 F. Zhang and X. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325 (2007), 496-516.       

Go to top