`a`
Mathematical Biosciences and Engineering (MBE)
 

Modeling of the migration of endothelial cells on bioactive micropatterned polymers
Pages: 997 - 1015, Issue 4, August 2013

doi:10.3934/mbe.2013.10.997      Abstract        References        Full text (1457.3K)           Related Articles

Thierry Colin - Univ. Bordeaux, IMB, UMR 5251, F-33400 Talence, France (email)
Marie-Christine Durrieu - INSERM, IECB, UMR 5248, F-33607 Pessac, France (email)
Julie Joie - Univ. Bordeaux, IMB, UMR 5251, F-33400 Talence, France (email)
Yifeng Lei - Univ. Bordeaux, IECB, UMR 5248, F-33607 Pessac, France (email)
Youcef Mammeri - INRIA, F-33400 Talence, France (email)
Clair Poignard - INRIA, F-33400 Talence, France (email)
Olivier Saut - CNRS, IMB, UMR 5251, F-33400 Talence, France (email)

1 A. Anderson and M. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis, Bulletin of Mathematical Biology, 60 (1998), 857-899.
2 K. Anselme, P. Davidson, A. M. Popa, M. Giazzon, M. Liley and L. Ploux, The interaction of cells and bacteria with surfaces structured at the nanometre scale, Acta Biomaterialia, 6 (2010), 3824-3846.
3 P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, I. Colloq. Math., 66 (1993), 319-334.       
4 A. Blanchet, J. Dolbeault and B. Perthame, Two dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solution, Electron. J. Differential Equations, 2006, No. 44, 32 pp. (electronic).       
5 P. Carmeliet and M. Tessier-Lavigne, Common mechanisms of nerve and blood vessel wiring, Nature, 436 (2005), 193-200.
6 C. S Chen, M. Mrksich, S. Huang, G. M. Whitesides and D. E. Ingber, Geometric control of cell life and death, Science, 276 (1997), 1425-1428.
7 L. E. Dike, C. S. Chen, M. Mrksich, J. Tien, G. M. Whitesides and D. E. Ingber, Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substr'ates, in Vitro Cell. Dev. Biol., 35 (1999), 441-448.
8 J. Dolbeault and B. Perthame, Optimal critical mass in the two dimensional Keller-Segel model in $\mathbbR^2$, C. R. Math. Acad. Sci. Paris, 339 (2004), 611-616.       
9 R. Eymard, T. Gallouet and R. Herbin, "Finite Volume Methods," Handbook of Numerical Analysis, (eds. P. G Ciarlet and J. L Lions), 2007.
10 A. Folch and M. Toner, Microengineering of cellular interactions, Annu. Rev. Biomed. Eng., 2 (2000), 227-256.
11 J. Folkman and C. Haudenschild, Angiogenesis in vitro, Nature, 288 (1980), 551-556.
12 H. Gajewski and K. Zacharias, Global behavior of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114.       
13 T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2008), 183-217.       
14 D. Horstmann, The nonsymmetric case of the Keller-Segel model in chemotaxis: Some recent results, Nonlinear Differ. Equ. Appl., 8 (2001), 399-423.       
15 W. Hundsdorfer and J. G. Verwer, "Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations," Springer Series in Comput. Math., 33, Springer, 2003.       
16 Y. Ito, Surface micropatterning to regulate cell functions, Biomaterials, 20 (1999), 2333-2342.
17 R. K. Jain, Molecular regulation of vessel maturation, Nat. Med., 9 (2003), 685-593.
18 R. K. Jain, P. Au, J. Tam, D. G. Duda and D. Fukumura, Engineering vascularized tissue, Nat Biotechnol, 23 (2005), 821-823.
19 G. S. Jiang and C. W Shu, Efficient implementation of weighted ENO schemes, J. of Computational Physics, 126 (1996), 202-228.       
20 M. Kamei, W. B. Saunders, K. J. Bayless, L. Dye, G. E. Davis and B. M. Weinstein, Endothelial tubes assemble from intracellular vacuoles, in vivo, Nature, 442 (2006), 453-456.
21 E. F. Keller and L. A. Segel, Traveling band of chemotactic bacteria: A theoretical analysis, Journal of Theo. Biol., 30 (1971), 235-248.
22 Y. Lei, O. F. Zouani, M. Rémy, L. Ramy and M. C. Durrieu, Modulation of lumen formation by microgeometrical bioactive cues and migration mode of actin machinery, Small, In Revision.
23 Y. Lei, O. F. Zouani, M. Rémy, C. Ayela and M. C. Durrieu, Geometrical microfeature cues for directing tubulogenesis of endothelial cells, PLoS ONE, 7 (2012), e41163.
24 X. D. Liu, S. Osher and T. Chan, Weighted essentially non-oscillatory schemes, Journal of Computational Physics, 115 (1994), 200-212.       
25 B. Lubarsky and M. A. Krasnow. Tube morphogenesis: Making and shaping biological tubes, Cell, 112 (2003), 19-28.
26 R. M. Nerem, Tissue engineering: The hope, the hype, and the future, Tissue Eng., 12 (2006), 1143-50.
27 D. V. Nicolau, T. Taguchi, H. Taniguchi, H. Tanigawa and S. Yoshikawa, Patterning neuronal and glia cells on light-assisted functionalized photoresists, Biosens. Bioelectron, 14 (1999), 317-325.
28 Z. K. Otrock, R. A. Mahfouz, J. A. Makarem and A. I. Shamseddine, Understanding the biology of angiogenesis: Review of the most important molecular mechanisms, Blood Cells Mol. Dis., 39 (2007), 212-220.
29 E. M Ouhabaz, "Analysis of Heat Equations on Domains," London Math. Soc. Monographs Series, Princeton University Press. 31, 2005.       
30 C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), 311-338.       
31 E. A. Phelps and A. J.Garcia, Engineering more than a cell: Vascularization strategies in tissue engineering, Curr. Opin. Biotechnol, 21 (2010), 704-709.
32 M. I. Santos and R. L. Reis, Vascularization in bone tissue engineering: Physiology, current strategies, major hurdles and future challenges, Macromol Biosci., 10 (2010), 12-27.
33 T. Senba and T. Suzuki, Chemotactic collapse in a parabolic-elliptic system of mathematical biology, Adv. Differential Equations, 6 (2001), 21-50.       
34 Y. Y. Li and M. S. Vogelius, Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients, Arch. Rational Mech. Anal., 153 (2000), 91-151.       
35 F. Y Wang and L.Yan, Gradient estimate on convex domains and application, To Appear in AMS. Proc., 141 (2013), 1067-1081. (Avalaible on http://arxiv.org/abs/1009.1965v2).       

Go to top