The ratio of hidden HIV infection in Cuba
Pages: 959  977,
Issue 4,
August
2013
doi:10.3934/mbe.2013.10.959 Abstract
References
Full text (426.2K)
Related Articles
Miguel Atencia  Dept. of Applied Mathematics, University of Málaga, 29071 Málaga, Spain (email)
Esther GarcíaGaraluz  Dept. of Electronics Technology, University of Málaga, 29071 Málaga, Spain (email)
Gonzalo Joya  Dept. of Electronics Technology, University of Málaga, 29071 Málaga, Spain (email)
1 
"WHO Case Definitions of HIV for Surveillance and Revised Clinical Staging and Immunological Classification of HIVrelated Disease in Adults and Children," World Health Organization, Geneva, 2007. 

2 
R. M. Anderson and R. M. May, "Infectious Diseases of Humans: Dynamics and Control," Oxford University Press, 1991. 

3 
M. Atencia, G. Joya, E. GarcíaGaraluz, H. de Arazoza and F. Sandoval, Estimation of the rate of detection of infected individuals in an epidemiological model, in "Computational and Ambient Intelligence" (eds. F. Sandoval, A. Prieto, J. Cabestany and M. Graña), 4507 of Lecture Notes in Computer Science, 948955. Springer, (2007). 

4 
M. Atencia, G. Joya and F. Sandoval, Modelling the HIVAIDS Cuban epidemics with Hopfield neural networks, in "Artificial Neural Nets Problem Solving Methods" (eds. J. Mira and J. Álvarez), 2687 of Lecture Notes in Computer Science, 10531053. Springer, (2003). 

5 
M. Atencia, G. Joya and F. Sandoval, Robustness of the Hopfield estimator for identification of dynamical systems, in "Advances in Computational Intelligence" (eds. J. Cabestany, I. Rojas and G. Joya), Springer, 6692 (2011), 516523. 

6 
N. Bailey, "The Mathematical Theory of Infectious Diseases and Its Applications," Oxford University Press, 1975. 

7 
F. Berezovskaya, G. Karev, B. Song and C. CastilloChavez, A simple epidemic model with surprising dynamics, Mathematical Biosciences and Engineering, 2 (2005), 133152. 

8 
H. de Arazoza and R. Lounes, A nonlinear model for a sexually transmitted disease with contact tracing, Mathematical Medicine and Biology, 19 (2002), 221234. 

9 
H. de Arazoza, R. Lounes, J. Pérez and T. Hoang, What percentage of the cuban HIVAIDS epidemic is known?, Revista Cubana de Medicina Tropical, 55 (2003), 3037. 

10 
R. P. Dickinson and R. J. Gelinas, Sensitivity analysis of ordinary differential equation systemsA direct method, Journal of Computational Physics, 21 (1976), 123143. 

11 
O. Diekmann and J. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases," John Wiley, 2000. 

12 
E. GarcíaGaraluz, M. Atencia, G. Joya, F. GarcíaLagos and F. Sandoval, Hopfield networks for identification of delay differential equations with an application to dengue fever epidemics in Cuba, Neurocomputing, 74 (2011), 26912697. 

13 
J. Gielen, A framework for epidemic models, Journal of Biological Systems, 11 (2003), 377405. 

14 
E. Hairer, S. Nørsett and G. Wanner, "Solving Ordinary Differential Equations I. NonStiff Problems," Springer, 1993. 

15 
M. W. Hirsch and S. Smale, "Differential Equations, Dynamical Systems, and Linear Algebra," Academic Press, 1974. 

16 
Y.H. Hsieh, H. de Arazoza, R. Lounes and J. Joanes, A class of methods for HIV contact tracing in Cuba: Implications for intervention and treatment, in "Deterministic and Stochastic Models of AIDS Epidemics and HIV Infections with Intervention," 7792. World Scientific, (2005). 

17 
Y.H. Hsieh, H.C. Wang, H. de Arazoza, R. Lounes, S.J. Twu and H.M. Hsu, Ascertaining HIV underreporting in low prevalence countries using the approximate ratio of underreporting, Journal of Biological Systems, 13 (2005), 441454. 

18 
P. A. Ioannou and J. Sun, "Robust Adaptive Control," PrenticeHall, 1996. 

19 
R. Isermann and M. Münchhof, "Identification of Dynamic Systems," Springer, 2011. 

20 
H. Khalil, "Nonlinear Systems," Macmillan Publishing Company, New York, 1992. 

21 
L. Ljung, "System Identification: Theory for the User," Prentice Hall, 1999. 

22 
J. Murray, "Mathematical Biology," Springer, 2002. 

23 
R. Naresh, A. Tripathi and D. Sharma, A nonlinear HIV/AIDS model with contact tracing, Applied Mathematics and Computation, 217 (2011), 95759591. 

24 
B. Rapatski, P. Klepac, S. Dueck, M. Liu and L. I. Weiss, Mathematical epidemiology of HIV/AIDS in Cuba during the period 19862000, Mathematical Biosciences and Engineering, 3 (2006), 545556. 

25 
K. Schittkowski, "Numerical Data Fitting in Dynamical Systems," Kluwer Academic Publishers, 2002. 

26 
M. Vidyasagar, "Nonlinear Systems Analysis," Society for Industrial and Applied Mathematics, 2002. 

Go to top
