Persistence and global stability for a class of discrete time structured population models
Pages: 4627  4646,
Issue 10,
October
2013
doi:10.3934/dcds.2013.33.4627 Abstract
References
Full text (425.0K)
Related Articles
Hal L. Smith  School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 852871804, United States (email)
Horst R. Thieme  School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287, United States (email)
1 
H. Caswell, "Matrix Population Models, Construction, Analysis, and Interpretation," 2nd ed., Sinauer Assoc. Inc., Sunderland MA, 2001. 

2 
J. M. Cushing, "An Introduction to Structured Population Dynamics," CBMSNSF Regional Conf. Series in Applied Math. 71, SIAM, Philadelphia, PA, 1998. 

3 
J. M. Cushing and Y. Zhou, The net reproductive value and stability in matrix population models, Nat. Res. Mod., 8 (1994), 297333. 

4 
N. Davydova, O. Diekmann and S. van Gils, On circulant populations. I. The algebra of semelparity, Lin. Alg. Appl., 398 (2005), 185243. 

5 
W. Desch and W. Schappacher, Linearized stability for nonlinear semigroups, Differential Equations in Banach Spaces (A. Favini, E. Obrecht, eds.), 6173, Lecture Notes in Mathematics 1223, Springer, Berlin Heidelberg, (1986). 

6 
O. Diekmann, N. Davydova and S. van Gils, On a boom and bust year class cycle, J. Difference Equ. Appl., 11 (2005), 327335. 

7 
O. Diekmann and Ph. Getto, Boundedness, global existence and continuous dependence for nonlinear dynamical systems describing physiologically structured populations, J. Diff. Equations, 215 (2005), 268319. 

8 
O. Diekmann, Ph. Getto and M. Gyllenberg, Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars, SIAM J. Math. Anal., 39 (2007/08), 10231069. 

9 
O. Diekmann, M. Gyllenberg, H. Huang, M. Kirkilionis, J. A. J. Metz and H. R. Thieme, On the formulation and analysis of general deterministic structured population models. II. Nonlinear theory, J. Math. Biol., 43 (2001), 157189. 

10 
O. Diekmann, M. Gyllenberg and J. A. J. Metz, Steadystate analysis of structured population models, Theor. Pop. Biol., 63 (2003), 309338. 

11 
O. Diekmann, M. Gyllenberg, J. A. J. Metz and H. R. Thieme, On the formulation and analysis of general deterministic structured population models. I. Linear theory, J. Math. Biol., 36 (1998), 349388. 

12 
O. Diekmann, M. Gyllenberg, J. A. J. Metz, S. Nakaoka and A. M. de Roos, Daphnia revisited: Local stability and bifurcation theory for physiologically structured population models explained by way of an example, J. Math. Biol., 61 (2010), 277318. 

13 
O. Diekmann, M. Gyllenberg and H. R. Thieme, Lack of uniqueness in transport equations with a nonlocal nonlinearity, Math. Models Methods Appl. Sci., 10 (2000), 581591. 

14 
O. Diekmann and S. A. van Gils, On the cyclic replicator equation and the dynamics of semelparous populations, SIAM J. Appl. Dyn. Sys., 8 (2009), 11601189. 

15 
O. Diekmann, S. A. van Gils and S. M. Verduyn Lunel, "Delay Equations: Functional, Complex, and Nonlinear Analysis," Springer, New York, 1995. 

16 
O. Diekmann, Y. Wang and P. Yan, Carrying simplices in discrete competitive systems and agestructured semelparous populations, Discrete Contin. Dyn. Syst., 20 (2008), 3752. 

17 
J. K. Hale, "Asymptotic Behavior of Dissipative Systems," American Mathematical Society, Providence 1988. 

18 
H. J. A. M. Heijmans, Some results from spectral theory, in "OneParameter Semigroups" (eds. Ph. ClĂ©ment, et al.), NorthHolland, Amsterdam, (1987), 282291. 

19 
M. A. Krasnosel'skij, "Positive Solutions of Operator Equations," Noordhoff, Groningen, 1964. 

20 
M. A. Krasnosel'skij, Je. A. Lifshits and A. V. Sobolev, "Positive Linear Systems: The Method of Positive Operators," Heldermann Verlag, Berlin, 1989. 

21 
C.K. Li and H. Schneider, Applications of PerronFrobenious theory to population dynamics, J. Math. Biol., 44 (2002), 450462. 

22 
R. Rebarber, B. Tenhumberg and S. Townley, Global asymptotic stability of density dependent integral population projection models, Theoretical Population Biology, 81 (2012), 8187. 

23 
H. H. Schaefer, "Topological Vector Spaces," SpringerVerlag, New York, 1971. 

24 
H. L. Smith, The discrete dynamics of monotonically decomposable maps, J. Math. Biology, 53 (2006), 747758. 

25 
H. L. Smith and H. R. Thieme, "Dynamical Systems and Population Persistence," Graduate Studies in Mathematics, 118, American Mathematical Society, Providence R.I. 2011. 

26 
H. R. Thieme, Densitydependent regulation of spatially distributed populations and their asymptotic speed of spread, J. Math. Biol., 8 (1979), 173187. 

27 
H. R. Thieme, Wellposedness of physiologically structured population models for Daphnia magna (How biological concepts can benefit by abstract mathematical analysis), J. Math. Biology, 26 (1988), 299317. 

28 
H. R. Thieme, "Mathematics in Population Biology," Princeton University Press, Princeton 2003. 

29 
H. R. Thieme, Spectral bound and reproduction number for infinite dimensional population structure and timeheterogeneity, SIAM J. Appl. Math., 70 (2009), 188211. 

30 
K. Yosida, "Functional Analysis," Springer, Heidelberg, New York, 1968. 

31 
E. Zeidler. "Nonlinear Functional Analysis and Its Applications," I SpringerVerlag, New York, 1993. 

Go to top
