`a`
Mathematical Biosciences and Engineering (MBE)
 

Computational modeling approaches to studying the dynamics of oncolytic viruses
Pages: 939 - 957, Issue 3, June 2013

doi:10.3934/mbe.2013.10.939      Abstract        References        Full text (2822.0K)           Related Articles

Dominik Wodarz - Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA 92617, United States (email)

1 J. C. Bell, Oncolytic viruses: What's next?, Curr. Cancer Drug Targets, 7 (2007), 127-131.
2 J. C. Bell, B. Lichty and D. Stojdl, Getting oncolytic virus therapies off the ground, Cancer Cell, 4 (2003), 7-11.
3 A. M. Crompton and D. H. Kirn, From ONYX-015 to armed vaccinia viruses: The education and evolution of oncolytic virus development, Curr. Cancer Drug Targets, 7 (2007), 133-139.
4 J. J. Davis and B. Fang, Oncolytic virotherapy for cancer treatment: Challenges and solutions, J. Gene. Med., 7 (2005), 1380-1389.
5 J. M. Kaplan, Adenovirus-based cancer gene therapy, Curr. Gene Ther., 5 (2005), 595-605.
6 E. Kelly and S. J. Russell, History of oncolytic viruses: Genesis to genetic engineering, Mol. Ther., 15 (2007), 651-659.
7 D. H. Kirn and F. McCormick, Replicating viruses as selective cancer therapeutics, Mol. Med. Today, 2 (1996), 519-527.
8 F. McCormick, Cancer-specific viruses and the development of ONYX-015, Cancer Biol. Ther., 2 (2003), S157-60.
9 F. McCormick, Future prospects for oncolytic therapy, Oncogene, 24 (2005), 7817-7819.
10 C. C. O'Shea, Viruses - seeking and destroying the tumor program, Oncogene, 24 (2005), 7640-7655.
11 K. A. Parato, et. al., Recent progress in the battle between oncolytic viruses and tumours, Nat. Rev. Cancer, 5 (2005), 965-976.
12 D. E. Post, et. al., Cancer scene investigation: how a cold virus became a tumor killer, Future Oncol., 1 (2005), 247-258.
13 M. S. Roberts, et. al., Naturally oncolytic viruses, Curr. Opin. Mol. Ther., 8 (2006), 314-321.       
14 M. J. Vaha-Koskela, J. E. Heikkila and A. E. Hinkkanen, Oncolytic viruses in cancer therapy, Cancer Lett., (2007).
15 H. H. Wong, N. R. Lemoine and Y. Wang, Oncolytic viruses for cancer therapy: Overcoming the obstacles, Viruses, 2 (2010), 78-106.
16 D. Koppers-Lalic and R. C. Hoeben, Non-human viruses developed as therapeutic agent for use in humans, Rev. Med. Virol, 21 (2011), 227-239.
17 R. L. Martuza, et. al., Experimental therapy of human glioma by means of a genetically engineered virus mutant, Science, 252 (1991), 854-856.
18 K. Garber, China approves world's first oncolytic virus therapy for cancer treatment, J. Natl. Cancer Inst., 98 (2006), 298-300.
19 R. M. Eager and J. Nemunaitis, Clinical development directions in oncolytic viral therapy, Cancer Gene. Ther., 18 (2011), 305-317.
20 D. Wodarz, Viruses as antitumor weapons: Defining conditions for tumor remission, Cancer Res., 61 (2001), 3501-3507.
21 D. Wodarz, Gene therapy for killing p53-negative cancer cells: Use of replicating versus nonreplicating agents, Hum. Gene. Ther., 14 (2003), 153-159.
22 Z. Bajzer, et. al., Modeling of cancer virotherapy with recombinant measles viruses, J. Theor. Biol., 252 (2008), 109-122.       
23 M. Biesecker, et. al., Optimization of virotherapy for cancer, Bull. Math. Biol., 72 (2010), 469-489.       
24 D. Dingli, et. al., Mathematical modeling of cancer radiovirotherapy, Math. Biosci., 199 (2006), 55-78.       
25 D. Dingli, et. al., Dynamics of multiple myeloma tumor therapy with a recombinant measles virus, Cancer Gene Ther., 16 (2009), 873-882.
26 A. Friedman, et. al., Glioma virotherapy: Effects of innate immune suppression and increased viral replication capacity, Cancer Res., 66 (2006), 2314-2319.
27 G. P. Karev, A. S. Novozhilov and E. V. Koonin, Mathematical modeling of tumor therapy with oncolytic viruses: effects of parametric heterogeneity on cell dynamics, Biol. Direct, 1 (2006), pp. 30.
28 N. L. Komarova and D. Wodarz, ODE models for oncolytic virus dynamics, J. Theor. Biol., 263 (2010), 530-543.       
29 A. S. Novozhilov, et. al., Mathematical modeling of tumor therapy with oncolytic viruses: Regimes with complete tumor elimination within the framework of deterministic models, Biol. Direct, 1 (2006), pp. 6.
30 L. M. Wein, J. T. Wu and D. H. Kirn, Validation and analysis of a mathematical model of a replication-competent oncolytic virus for cancer treatment: Implications for virus design and delivery, Cancer Res., 63 (2003), 1317-1324.
31 D. Wodarz, Computational approaches to study oncolytic virus therapy: Insights and challenges, Gene Therapy and Molecular Biology, 8 (2004), 137-146.
32 D. Wodarz, Use of oncolytic viruses for the eradication of drug-resistant cancer cells, J. R. Soc. Interface, 6 (2009), 179-186.
33 D. Wodarz and N. Komarova, Towards predictive computational models of oncolytic virus therapy: Basis for experimental validation and model selection, PLoS ONE, 4 (2009), e4271.
34 N. Bagheri, et. al., A dynamical systems model for combinatorial cancer therapy enhances oncolytic adenovirus efficacy by MEK-inhibition, PLoS Comput. Biol., 7 (2011), e1001085.
35 R. Zurakowski and D. Wodarz, Model-driven approaches for in vitro combination therapy using ONYX-015 replicating oncolytic adenovirus, J. Theor. Biol., 245 (2007), 1-8.       
36 W. Mok, et. al., Mathematical modeling of herpes simplex virus distribution in solid tumors: Implications for cancer gene therapy, Clin. Cancer Res., 15 (2009), 2352-2360.
37 L. R. Paiva, et. al., A multiscale mathematical model for oncolytic virotherapy, Cancer Res., 69 (2009), 1205-1211.
38 C. L. Reis, et. al., In silico evolutionary dynamics of tumour virotherapy, Integr. Biol. (Camb), 2 (2010), 41-45.
39 L. You, C. T. Yang and D. M. Jablons, ONYX-015 works synergistically with chemotherapy in lung cancer cell lines and primary cultures freshly made from lung cancer patients, Cancer Res., 60 (2000), 1009-1013.
40 A. Chahlavi, et. al., Replication-competent herpes simplex virus vector G207 and cisplatin combination therapy for head and neck squamous cell carcinoma, Neoplasia, 1 (1999), 162-169.
41 I. A. Rodriguez-Brenes, N. L. Komarova and D. Wodarz, Evolutionary dynamics of feedback escape and the development of stem-cell-driven cancers, Proc. Natl. Acad. Sci. U S A, 108 (2011), 18983-18988.
42 D. Wodarz, et. al., Complex spatial dynamics of oncolytic viruses in vitro: Mathematical and experimental approaches, PLoS Comput. Biol., 8 (2012), e1002547.
43 K. Sato, H. Matsuda and A. Sasaki, Pathogen invasion and host extinction in lattice structured populations, Journal of Mathematical Biology, 32 (1994), 251-268.
44 A. M. Deroos, E. Mccauley and W. G. Wilson, Mobility versus density-limited predator prey dynamics on different spatial scales, Proceedings of the Royal Society of London Series B-Biological Sciences, 246 (1991), 117-122.
45 M. Pascual, P. Mazzega and S. A. Levin, Oscillatory dynamics and spatial scale: The role of noise and unresolved pattern, Ecology, 82 (2001), 2357-2369.
46 R. M. Anderson and R. M. May, "Infectious Diseases of Humans," 1991, Oxford, England: Oxford University Press.
47 M. A. Nowak and R. M. May, "Virus Dynamics. Mathematical Principles of Immunology and Virology," 2000: Oxford University Press.       
48 M. P. Hassell, "The Spatial and Temporal Dynamics of Host-Parasitoid Interactions," 2000, Oxford: Oxford University Press.

Go to top