On the MTD paradigm and optimal control for multidrug cancer chemotherapy
Pages: 803  819,
Issue 3,
June
2013
doi:10.3934/mbe.2013.10.803 Abstract
References
Full text (483.9K)
Related Articles
Urszula Ledzewicz  Dept. of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, Illinois, 620261653, United States (email)
Heinz Schättler  Dept. of Electrical and Systems Engineering, Washington University, St. Louis, Mo 63130, United States (email)
Mostafa Reisi Gahrooi  Dept. of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, Illinois, 620261653, United States (email)
Siamak Mahmoudian Dehkordi  Dept. of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, Illinois, 620261653, United States (email)
1 
M. R. Alison and C. E. Sarraf, "Understanding CancerFrom Basic Science to Clinical Practice," Cambridge University Press, 1997. 

2 
B. Bonnard and M. Chyba, "Singular Trajectories and their Role in Control Theory," Springer Verlag, Series: Mathematics and Applications, 40, 2003. 

3 
H. Derendorf, T. Gramatte and H. G. Schaefer, "Pharmacokinetics  Introduction into Theory and Practice," (in German), 2nd ed., Deutscher Apotheker Verlag, Stuttgart, Germany. 

4 
M. Eisen, "Mathematical Models in Cell Biology and Cancer Chemotherapy," Lecture Notes in Biomathematics, 30, Springer Verlag, 1979. 

5 
P. Hahnfeldt, J. Folkman and L. Hlatky, Minimizing longterm burden: The logic for metronomic chemotherapeutic dosing and its angiogenic basis, J. of Theoretical Biology, 220 (2003), 545554. 

6 
M. Kimmel and A. Swierniak, An optimal control problem related to leukemia chemotherapy, Scientific Bulletin of the Silesian Technical University, 65 (1983), 120130. 

7 
U. Ledzewicz, M. Naghnaeian and H. Schättler, Optimal response to chemotherapy for a mathematical model of tumorimmune dynamics, J. of Mathematical Biology, 64 (2012), 557577. 

8 
U. Ledzewicz and H. Schättler, Optimal bangbang controls for a 2compartment model in cancer chemotherapy, J. of Optimization Theory and Applications  JOTA, 114 (2002), 609637. 

9 
U. Ledzewicz and H. Schättler, Analysis of a cellcycle specific model for cancer chemotherapy, J. of Biological Systems, 10 (2002), 183206. 

10 
U. Ledzewicz, H. Schättler and A. Swierniak, Finite dimensional models of drug resistant and phase specific cancer chemotherapy, J. of Medical Information Technology, 8 (2004), 513. 

11 
U. Ledzewicz and H. Schättler, Drug resistance in cancer chemotherapy as an optimal control problem, Discrete and Continuous Dynamical Systems, Series B, 6 (2006), 129150. 

12 
U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem, SIAM J. on Control and Optimization, 46 (2007), 10521079. 

13 
U. Ledzewicz and H. Schaettler, Singular controls and chattering arcs in optimal control problems arising in biomedicine, Control and Cybernetics, 38 (2009), 15011523. 

14 
A. P. Lyss, Enzymes and random synthetics, in "Chemotherapy Source Book" (ed. M. C. Perry), Williams &Wilkins, Baltimore, (1992), 403408. 

15 
J. C. Panetta, Y. Yanishevski, C. H. Pui, J. T. Sandlund, J. Rubnitz, G. K. Rivera, W. E. Evans and M. V. Relling, A mathematical model of in vivo methotrexate accumulation in acute lymphoblastic leukemia, Cancer Chemotherapy and Pharmacology, 50 (2002), 419428. 

16 
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes," MacMillan, New York, 1964. 

17 
H. Schättler and U. Ledzewicz, "Geometric Optimal Control: Theory, Methods and Examples," Springer Verlag, 2012. 

18 
H. Schättler, U. Ledzewicz, S. Mahmoudian Dehkordi and M. Reisi Gahrooi, A geometric analysis of bangbang extremals in optimal control problems for combination cancer chemotherapy, Proc. of the 51st IEEE Conference on Decision and Control, Maui, (2012), 76917696. 

19 
H. E. Skipper, Perspectives in cancer chemotherapy: Therapeutic design, Cancer Research, 24 (1964), 12951302. 

20 
J. Smieja and A. Swierniak, Different models of chemotherapy taking into account drug resistance stemming from gene amplification, Int. J. of Applied Mathematics and Computer Science, 13 (2003), 297305. 

21 
G. W. Swan, Role of optimal control in cancer chemotherapy, Mathematical Biosciences, 101 (1990), 237284. 

22 
A. Swierniak, Optimal treatment protocols in leukemia  modelling the proliferation cycle, Proceedings of the 12th IMACS World Congress, Paris, 4 (1988), 170172. 

23 
A. Swierniak, Some control problems for simplest models of proliferation cycle, Applied mathematics and Computer Science, 4 (1994), 223233. 

24 
A. Swierniak, Cell cycle as an object of control, J. of Biological Systems, 3 (1995), 4154. 

25 
A. Swierniak, Direct and indirect control of cancer populations, Bulletin of the Polish Academy of Sciences, Technical Sciences, 56 (2008), 367378. 

26 
A. Swierniak, U. Ledzewicz and H. Schättler, Optimal control for a class of compartmental models in cancer chemotherapy, Int. J. Applied Mathematics and Computer Science, 13 (2003), 357368. 

27 
A. Swierniak, A. Polanski and M. Kimmel, Optimal control problems arising in cellcyclespecific cancer chemotherapy, Cell Proliferation, 29 (1996), 117139. 

28 
A. Swierniak, A. Polanski, M. Kimmel, A. Bobrowski and J. Smieja, Qualitative analysis of controlled drug resistance model  inverse Laplace and semigroup approach, Control and Cybernetics, 28 (1999), 6175. 

29 
A. Swierniak and J. Smieja, Cancer chemotherapy optimization under evolving drug resistance, Nonlinear Analysis, 47 (2000), 375386. 

30 
S. D. Weitman, E. Glatstein and B. A. Kamen, Back to the basics: the importance of concentration $\times$ time in oncology, J. of Clinical Oncology, 11 (1993), 820821. 

31 
T. E. Wheldon, "Mathematical Models in Cancer Research," BostonPhiladelphia: Hilger Publishing, 1988. 

Go to top
