`a`
Mathematical Biosciences and Engineering (MBE)
 

On the MTD paradigm and optimal control for multi-drug cancer chemotherapy
Pages: 803 - 819, Issue 3, June 2013

doi:10.3934/mbe.2013.10.803      Abstract        References        Full text (483.9K)           Related Articles

Urszula Ledzewicz - Dept. of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, Illinois, 62026-1653, United States (email)
Heinz Schättler - Dept. of Electrical and Systems Engineering, Washington University, St. Louis, Mo 63130, United States (email)
Mostafa Reisi Gahrooi - Dept. of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, Illinois, 62026-1653, United States (email)
Siamak Mahmoudian Dehkordi - Dept. of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, Illinois, 62026-1653, United States (email)

1 M. R. Alison and C. E. Sarraf, "Understanding Cancer-From Basic Science to Clinical Practice," Cambridge University Press, 1997.
2 B. Bonnard and M. Chyba, "Singular Trajectories and their Role in Control Theory," Springer Verlag, Series: Mathematics and Applications, 40, 2003.       
3 H. Derendorf, T. Gramatte and H. G. Schaefer, "Pharmacokinetics - Introduction into Theory and Practice," (in German), 2nd ed., Deutscher Apotheker -Verlag, Stuttgart, Germany.
4 M. Eisen, "Mathematical Models in Cell Biology and Cancer Chemotherapy," Lecture Notes in Biomathematics, 30, Springer Verlag, 1979.
5 P. Hahnfeldt, J. Folkman and L. Hlatky, Minimizing long-term burden: The logic for metronomic chemotherapeutic dosing and its angiogenic basis, J. of Theoretical Biology, 220 (2003), 545-554.
6 M. Kimmel and A. Swierniak, An optimal control problem related to leukemia chemotherapy, Scientific Bulletin of the Silesian Technical University, 65 (1983), 120-130.
7 U. Ledzewicz, M. Naghnaeian and H. Schättler, Optimal response to chemotherapy for a mathematical model of tumor-immune dynamics, J. of Mathematical Biology, 64 (2012), 557-577.       
8 U. Ledzewicz and H. Schättler, Optimal bang-bang controls for a 2-compartment model in cancer chemotherapy, J. of Optimization Theory and Applications - JOTA, 114 (2002), 609-637.       
9 U. Ledzewicz and H. Schättler, Analysis of a cell-cycle specific model for cancer chemotherapy, J. of Biological Systems, 10 (2002), 183-206.
10 U. Ledzewicz, H. Schättler and A. Swierniak, Finite dimensional models of drug resistant and phase specific cancer chemotherapy, J. of Medical Information Technology, 8 (2004), 5-13.
11 U. Ledzewicz and H. Schättler, Drug resistance in cancer chemotherapy as an optimal control problem, Discrete and Continuous Dynamical Systems, Series B, 6 (2006), 129-150.       
12 U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem, SIAM J. on Control and Optimization, 46 (2007), 1052-1079.       
13 U. Ledzewicz and H. Schaettler, Singular controls and chattering arcs in optimal control problems arising in biomedicine, Control and Cybernetics, 38 (2009), 1501-1523.       
14 A. P. Lyss, Enzymes and random synthetics, in "Chemotherapy Source Book" (ed. M. C. Perry), Williams &Wilkins, Baltimore, (1992), 403-408.
15 J. C. Panetta, Y. Yanishevski, C. H. Pui, J. T. Sandlund, J. Rubnitz, G. K. Rivera, W. E. Evans and M. V. Relling, A mathematical model of in vivo methotrexate accumulation in acute lymphoblastic leukemia, Cancer Chemotherapy and Pharmacology, 50 (2002), 419-428.
16 L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes," MacMillan, New York, 1964.       
17 H. Schättler and U. Ledzewicz, "Geometric Optimal Control: Theory, Methods and Examples," Springer Verlag, 2012.       
18 H. Schättler, U. Ledzewicz, S. Mahmoudian Dehkordi and M. Reisi Gahrooi, A geometric analysis of bang-bang extremals in optimal control problems for combination cancer chemotherapy, Proc. of the 51st IEEE Conference on Decision and Control, Maui, (2012), 7691-7696.
19 H. E. Skipper, Perspectives in cancer chemotherapy: Therapeutic design, Cancer Research, 24 (1964), 1295-1302.
20 J. Smieja and A. Swierniak, Different models of chemotherapy taking into account drug resistance stemming from gene amplification, Int. J. of Applied Mathematics and Computer Science, 13 (2003), 297-305.       
21 G. W. Swan, Role of optimal control in cancer chemotherapy, Mathematical Biosciences, 101 (1990), 237-284.
22 A. Swierniak, Optimal treatment protocols in leukemia - modelling the proliferation cycle, Proceedings of the 12th IMACS World Congress, Paris, 4 (1988), 170-172.       
23 A. Swierniak, Some control problems for simplest models of proliferation cycle, Applied mathematics and Computer Science, 4 (1994), 223-233.       
24 A. Swierniak, Cell cycle as an object of control, J. of Biological Systems, 3 (1995), 41-54.
25 A. Swierniak, Direct and indirect control of cancer populations, Bulletin of the Polish Academy of Sciences, Technical Sciences, 56 (2008), 367-378.
26 A. Swierniak, U. Ledzewicz and H. Schättler, Optimal control for a class of compartmental models in cancer chemotherapy, Int. J. Applied Mathematics and Computer Science, 13 (2003), 357-368.       
27 A. Swierniak, A. Polanski and M. Kimmel, Optimal control problems arising in cell-cycle-specific cancer chemotherapy, Cell Proliferation, 29 (1996), 117-139.
28 A. Swierniak, A. Polanski, M. Kimmel, A. Bobrowski and J. Smieja, Qualitative analysis of controlled drug resistance model - inverse Laplace and semigroup approach, Control and Cybernetics, 28 (1999), 61-75.
29 A. Swierniak and J. Smieja, Cancer chemotherapy optimization under evolving drug resistance, Nonlinear Analysis, 47 (2000), 375-386.       
30 S. D. Weitman, E. Glatstein and B. A. Kamen, Back to the basics: the importance of concentration $\times$ time in oncology, J. of Clinical Oncology, 11 (1993), 820-821.
31 T. E. Wheldon, "Mathematical Models in Cancer Research," Boston-Philadelphia: Hilger Publishing, 1988.

Go to top