`a`
Mathematical Biosciences and Engineering (MBE)
 

Finite element approximation of a population spatial adaptation model
Pages: 637 - 647, Issue 3, June 2013

doi:10.3934/mbe.2013.10.637      Abstract        References        Full text (201.0K)           Related Articles

Gonzalo Galiano - Dpto. de Matemáticas, Universidad de Oviedo, c/ Calvo Sotelo, 33007-Oviedo, Spain (email)
Julián Velasco - Dpto. de Matemáticas, Universidad de Oviedo, c/ Calvo Sotelo, 33007-Oviedo, Spain (email)

1 J. W. Barrett and J. F. Blowey, Finite element approximation of a nonlinear cross-diffusion population model, Numer. Math., 98 (2004), 195-221.       
2 L. Chen and A. Jüngel, Analysis of a multidimensional parabolic population model with strong cross-diffusion, SIAM J. Math. Anal., 36 (2004), 301-322.       
3 L. Chen and A. Jüngel, Analysis of a parabolic cross-diffusion semiconductor model with electron-hole scattering, Commun. Part. Diff. Eqs., 32 (2007), 127-148.       
4 P. Deuring, An initial-boundary value problem for a certain density-dependent diffusion system, Math. Z., 194 (1987), 375-396.       
5 H. Gajewski and K. Zacharias, Global behaviour of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114.       
6 G. Galiano, Modeling spatial adaptation of populations by a time non-local convection cross-diffusion evolution problem, Appl. Math. Comput., 218 (2011), 4587-4594.       
7 G. Galiano, On a cross-diffusion population model deduced from mutation and splitting of a single species, Comput. Math. Appl., 64 (2012), 1927-1936.       
8 G. Galiano, M. L. Garzón and A. Jüngel, Analysis and numerical solution of a nonlinear cross-diffusion system arising in population dynamics, RACSAM Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A. Mat., 95 (2001), 281-295.       
9 G. Galiano, M. L. Garzón and A. Jüngel, Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model, Numer. Math., 93 (2003), 655-673.       
10 G. Galiano and A. Jüngel, Global existence of solutions for a strongly coupled population system, Banach Center Publ., 63 (2004), 209-216.       
11 G. Galiano, A. Jüngel and J. Velasco, A parabolic cross-diffusion system for granular materials, SIAM J. Math. Anal., 35 (2003), 561-578.       
12 G. Galiano and J. Velasco, Competing through altering the environment: A cross-diffusion population model coupled to transport Darcy flow equations, Nonlinear Anal., 12 (2011), 2826-2838.       
13 G. Gambino, M. C. Lombardo and M. Sammartino, A velocity-diffusion method for a Lotka-Volterra system with nonlinear cross and self-diffusion, Appl. Numer. Math., 59 (2009), 1059-1074.       
14 J. U. Kim, Smooth solutions to a quasi-linear system of diffusion equations for a certain population model, Nonlinear Analysis TMA, 8 (1984), 1121-1144.       
15 Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Diff. Eqs., 131 (1996), 79-131.       
16 Y. Lou, W.-M. Ni and Y. Wu, The global existence of solutions for a cross-diffusion system, Adv. Math., Beijing, 25 (1996), 283-284.
17 M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations, J. Math. Biol., 9 (1980), 49-64.       
18 N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theor. Biol., 79 (1979), 83-99.       
19 A. Yagi, Global solution to some quasilinear parabolic system in population dynamics, Nonlinear Analysis TMA, 21 (1993), 603-630.       

Go to top