`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

B cell chronic lymphocytic leukemia - A model with immune response
Pages: 1053 - 1076, Issue 4, June 2013

doi:10.3934/dcdsb.2013.18.1053      Abstract        References        Full text (1076.8K)                  Related Articles

Seema Nanda - Tata Institute of Fundamental Research, Centre for Applicable Mathematics, Bangalore 560065, India (email)
Lisette dePillis - Department of Mathematics, Harvey Mudd College, Claremont, CA 91711, United States (email)
Ami Radunskaya - Department of Mathematics, Pomona College, Claremont, CA, 91711, United States (email)

1 M. J. Keating, N. Chiorazzi, B. Messmer, R. N. Damle, S. L. Allen, K. R. Rai, et al., Biology and treatment of chronic lymphocytic leukemia, American Society of Hematology, [Review], 153 (2003), 153-175.
2 N. Chiorazzi, K. R. Rai and M. Ferrarini, Mechanisms of disease: Chronic lymphocytic leukemia, The New England Journal of Medicine, 352 (2005), 804-815, [http://www.nejm.org].
3 F. Caligaris-Cappio and R. D. Favera (Eds), "Chronic Lymphocytic Leukemia," No. 294 in Current Topics in Microbiology and Immunology, Springer, 1 edition 2005.
4 C. Imai, S. Iwamoto and D. Campana, Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells, Blood, 106 (2005), 376-383.
5 S. Y. Zimmermann, R. Esser, E. Rohrbach, T. Klingebiel and U. Koehl, A novel four-colour flow cytometric assay to determine natural killer cell or T-cell-mediated cellular cytotoxicity against leukaemic cells in peripheral or bone marrow specimens containing greater than 20 Journal of Immunological Methods, 296 (2005), 63-76.
6 H. Guven, M. Gilljam, B. Chambers, H. Ljunggren, B. Christensson, E. Kimby, et al., Expansion of natural killer (NK) and natural killer-like T (NKT)-cell populations derived from patients with B-chronic lymphocytic leukemia (B-CLL), a potential source for cellular immunotherapy, Leukemia, 17 (2003), 1973-1980.
7 R. J. Prestwich, F. Errington, P. Hatfieldy, A. E. Merrick, E. J. Ilett, P. J. Selby, et al., The immune system - Is it relevant to cancer development, progression and treatment? Clinical Oncology, 20 (2008), 101-112.
8 E. Gitelson, C. Hammond, J. Mena, M. Lorenzo, R. Buckstein, N. L. Berinstein, et al., Chronic lymphocytic leukemia-reactive T cells during disease progression and after autologous tumor cell vaccines, Clinical Cancer Research, 9 (2003), 1656-1665.
9 M. C. Mackey, C. Ou, L. Pujo-Menjouet and J. Wu, Periodic oscillations of blood cell populations in chronic myelogenous leukemia, SIAM J. Math. Anal., 38 (2006), 166-187.       
10 C. Colijn and M. C. Mackey, A mathematical model of hematopoiesis - I. Periodic chronic myelogenous leukemia, Journal of Theoretical Biology, 237 (2005), 117-146.       
11 H. Moore and N. K. Li, A mathematical model for chronic myelogenous leukemia (CML) and T cell interaction, Journal of Theoretical Biology, 227 (2004), 513-523.       
12 C. Haurie, D. C. Dale and M. C. Mackey, Cyclical neutropenia and other periodic hematological disorders: A review of mechanisms and mathematical models, Blood, 92 (1998), 2629-2640.
13 B. Vitale, M. Martinis, M. Antica, B. Kusic, S. Rabatic, A. Gagro, et al., Prolegomenon for chronic lymphocytic leukaemia, Scandinavian Journal of Immunology, 58 (2003), 588-600.
14 M. Martinis, B. Vitale, V. Zlatic, B. Dobrosevic and K. Dodig, Mathematical model of B-cell chronic lymphocytic leukemia (CLL), Periodicum Biologorum, 107 (2005), 445-450.
15 S. I. Niculescu, P. S. Kim, K. Gu, P. P. Lee and D. Levy, Stability crossing boundaries of delaty sustems modeling immune dynamics in leukemia, Discrete and Continuous Dynamical Systems Series B, 13 (2010), 129-156.       
16 B. T. Messmer, D. Messmer, S. L. Allen, J. E. Kolitz, P. Kudalkar, D. Cesar, et al., In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells, The Journal of Clinical Investigation, 115 (2005), 755-764.
17 H. Mellstedt and A. Choudhur, T and B cells in in B-chronic lymphocytic leukaemia: Faust, mephistopheles and the pact with the devil, Cancer Immunology, 55 (2006), 210-220.
18 A. L. Shaffer III, R. M. Young and L. M. Staudt, Pathogenesis of human B cell lymphomas, Annual Review of Immunology, 30 (2012), 565-610.
19 L. G. dePillis, A. E. Radunskaya and C. L. Wiseman, A validated mathematical model of cell-mediated immune response to tumor growth, Cancer Research, 65 (2005), 7950-7958.
20 C. A. Janeway, P. Travers, M. Walport andM. J. Shlomchik, "Immunobiology," Garland Science, 6th edition 2005.
21 V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bulletin of Mathematical Biology, 56 (1994), 295-321.
22 S. M. Blower and H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: An HIV model, as an example, International Statistical Review, 62 (1994), 229-243.
23 M. Hellerstein, M. Hanley, D. Cesar, S. Siler, C. Papageorgopoulos, E. Wieder, et al., Directly measured kinetics of circulating T lymphocytes in normal and HIV-1-infected humans, Nature Medicine, 5 (1999), 83-89.
24 A. M. Jamieson, P. Isnard, J. R. Dorfman, M. C. Coles and D. H. Raulet, Turnover and proliferation of NK cells in steady state and lymphopenic conditions, The Journal of Immunology, 172 (2004), 864-870.
25 R. J. DeBoer, H. Mohri, D. D. Ho and A. S. Perelson, Turnover rates of B cells, T cells, and NK cells in simian immunodeficiency virus-infected and uninfected rhesus macaques, The Journal of Immunology, 170 (2003), 2479-2487.
26 A. K. Abbas, A. H. Lichtman and S. Pillai, "Cellular and Molecular Immunology," Saunders, 7 edition 2007.
27 A. Shimoni, H. Marcus, A. Canaan, D. Ergas, M. David, A. Berrebi, et al., A model for human B-chronic lymphocytic leukemia in human/mouse radiation chimera: Evidence for tumor-mediated suppression of antibody production in low-stage disease, Blood, 89 (1997), 2210-2218.
28 Y. Jiang, H. Shang, Z. Zhang, Y. Diao, D. Dai, W. Geng, et al., Alterations of natural killer cell and T-lymphocyte counts in adults infected with human immunodeficiency virus through blood and plasma sold in the past in China and in whom infection has progressed slowly over a long period, Clinical and Diagnostic Laboratory Immunology, 12 (2005), 1275-1279.
29 E. Kimby, H. Mellstedt, B. Nilsson, M. Bj├Ârkholm and G. Holm, Differences in blood T and NK cell populations between chronic lymphocytic leukemia of B cell type (B-CLL) and monoclonal B-Lymphocytes of Undetermined Significance (B-MLUS), Leukemia, 3 (1989), 501-504.
30 M. Hernberg, T. Muhonen, J. P. Turunen, M .Hahka-Kemppinen and S. Pyrhonen, The CD4+/CD8+ ratio as a prognostic factor in patients with metastatic melanoma receiving chemoimmunotherapy, Journal Of Clinical Oncology, 14 (1996), 1698-1696.
31 I. Tinhofer, I. Marschitz, M. Kos, T. Henn, A. Egle, A. Villunger and R. Greil, Differential sensitivity of CD41 and CD81 T lymphocytes to the killing efficacy of fas (Apo-1/CD95) Ligand1 tumor cells in B chronic lymphocytic leukemia, Blood, 91 (1998), 4273-4281.
32 G. B. West, J. H. Brown and B. J. Enquist, A general model for the origin of allometric scaling laws in biology, Science, 276 (1997), 122-126.
33 A. McClean and C. Michie, In vivo estimates of division and death rates of general human T lymphocytes, Proc. Natl. Acad. Sci. USA, 92 (1995), 3707-3711.

Go to top