Sequences of compatible periodic hybrid orbits of prefractal Koch snowflake billiards
Pages: 3719  3740,
Issue 8,
August
2013
doi:10.3934/dcds.2013.33.3719 Abstract
References
Full text (1019.7K)
Related Articles
Michel L. Lapidus  University of California, Riverside, 900 Big Springs Rd., Riverside, CA 92521, United States (email)
Robert G. Niemeyer  University of California, Riverside, 900 Big Springs Rd., Riverside, CA 92521, United States (email)
1 
J. P. Chen and R. G. Niemeyer, Periodic billiard orbits of selfsimilar Sierpinski carpets, in Preparation, (2012). 

2 
E. DuraneCartagena and J. T. Tyson, Rectifiable curves in Sierpiński carpets, to appear in Indiana Univ. Math. J., (2011). 

3 
K. J. Falconer, "Fractal Geometry: Mathematical Foundations and Applications," John Wiley & Sons, Chichester, 1990. (2nd edition, 2003.) 

4 
G. Galperin, Ya. B. Vorobets and A. M. Stepin, Periodic billiard trajectories in polygons, Russian Math. Surveys, 47 (1992), 580. 

5 
E. Gutkin, Billiards in polygons: Survey of recent results, J. Stat. Phys., 83 (1996), 726. 

6 
E. Gutkin, Billiards on almost integrable polyhedral surfaces, Erg. Th. and Dyn. Syst., 4 (1984), 569584. 

7 
E. Gutkin and C. Judge, The geometry and arithmetic of translation surfaces with applications to polygonal billiards, Math. Res. Lett., 3 (1996), 391403. 

8 
E. Gutkin and C. Judge, Affine mappings of translation surfaces: Geometry and arithmetic, Duke Math. J., 103 (2000), 191213. 

9 
P. Hubert and T. Schmidt, An introduction to Veech surfaces, in "Handbook of Dynamical Systems" 1B (eds. A. Katok and B. Hasselblatt), Elsevier, Amsterdam, (2006), 501526. 

10 
A. Katok and B. Hasselblatt, "A First Course in Dynamics: With a Panorama of Recent Developments," Cambridge Univ. Press, Cambridge, 2003. 

11 
A. Katok and A. Zemlyakov, Topological transitivity of billiards in polygons, Math. Notes, 18 (1975), 760764. 

12 
M. L. Lapidus and R. G. Niemeyer, Towards the Koch snowflake fractal billiardComputer experiments and mathematical conjectures, in "Gems in Experimental Mathematics" (eds. T. Amdeberhan, L. A. Medina and V. H. Moll), Contemporary Mathematics, Amer. Math. Soc., Providence, RI, 517 (2010), 231263. [Eprint: arXiv:math.DS.0912.3948v1, 2009.] 

13 
M. L. Lapidus and R. G. Niemeyer, Families of periodic orbits of the Koch snowflake fractal billiard, 63 pages, eprint, arXiv:1105.0737v1, (2011). 

14 
M. L. Lapidus and R. G. Niemeyer, Veech groups $\Gamma_n$ of the Koch snowflake prefractal flat surfaces $\mathcalS(\ks_n)$, in Progress, 2012. 

15 
M. L. Lapidus and R. G. Niemeyer, Experimental evidence in support of a fractal law of reflection, in progress, (2012). 

16 
W. S. Massey, "Algebraic Topology: An Introduction," SpringerVerlag, New York, 1977. 

17 
H. Masur, Closed trajectories for quadratic differentials with an applications to billiards, Duke Math. J., 53 (1986), 307314. 

18 
H. Masur and S. Tabachnikov, Rational billiards and flat structures, in "Handbook of Dynamical Systems" 1A (eds. A. Katok and B. Hasselblatt), Elsevier, Amsterdam, (2002), 10151090. 

19 
J. Smillie, Dynamics of billiard flow in rational polygons, in "Dynamical Systems" Encyclopedia of Math. Sciences, 100, Math. Physics 1 ( ed. Ya. G. Sinai), SpringerVerlag, New York, (2000), 360382. 

20 
S. Tabachnikov, "Billiards," Panoramas et Synthèses, Soc. Math. France, Paris, 1995. 

21 
S. Tabachnikov, "Geometry and Billiards," Amer. Math. Soc., Providence, RI, 2005. 

22 
W. A. Veech, The billiard in a regular polygon, Geom. Funct. Anal., 2 (1992), 341379. 

23 
W. A. Veech, Flat surfaces, Amer. J. Math., 115 (1993), 589689. 

24 
Ya. B. Vorobets, Plane structures and billiards in rational polygons: The Veech alternative, Russian Math. Surveys, 51 (1996), 779817. 

25 
G. WeitzeSchmithüsen, An algorithm for finding the Veech group of an origami, Experimental Mathematics, 13 (2004), 459472. 

26 
A. Zorich, Flat surfaces, in "Frontiers in Number Theory, Physics and Geometry" I (eds. P. Cartier, et al.,), SpringerVerlag, Berlin, (2002), 439585. 

Go to top
