`a`
Mathematical Biosciences and Engineering (MBE)
 

Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays
Pages: 483 - 498, Issue 2, April 2013

doi:10.3934/mbe.2013.10.483      Abstract        References        Full text (394.7K)           Related Articles

Zhaohui Yuan - College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, China (email)
Xingfu Zou - Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7, Canada (email)

1 L. K. Andrea and S. Ranjan, Evaluation of HIV-1 kinetic models using quantitative discrimination analysis, Bioinformatics, 21 (2005), 1668-1677.
2 R. Arnaout, M. Nowak and D. Wodarz, HIV-1 dynamics revisited: Biphasic decay by cytotoxic lymphocyte killing?, Proc. Roy. Soc. Lond. B, 265 (2000), 1347-1354.
3 S. Bonhoeffer, J. M. Coffin and M. A. Nowak, Human immunodeficiency virus drug therapy and virus load, J. Virol., 71 (1997), 3275-3278.
4 S. Bonhoeffer, R. M. May, G. M. Shaw and M. A. Nowak, Virus dynamics and drug therapy, Proc. Natl. Acad. Sci. USA, 94 (1997), 6971-6976.
5 N. Burić, M. Mudrinic and N. Vasović, Time delay in a basic model of the immune response, Chaos, Solitons and Fractals, 12 (2001), 483-489
6 T. A. Burton, Volterra integral and differential equations, in "Mathematics In Science And Engineering" $2^{nd}$ edition, Elsevier, Amsterdam-Boston, 202 (2005).       
7 L. Cai and J. Wu, Analysis of an HIV/AIDS treatment model with a nonlinear incidence, Chaos, Solitons and Fractals, 41 (2009), 175-182.       
8 D. Callaway and A. S. Perelson, HIV-1 infection and low steady state viral loads, Bulletin of Mathematical Biology, 64 (2002), 29-64.
9 A. A. Canabarro, I. M. Gléria and M. L. Lyra, Periodic solutions and chaos in a non-linear model for the delayed cellular immune response, Physica A, 342 (2004), 234-241.
10 M. S. Ciupe, B. L. Bivort, D. M. Bortz and P. W. Nelson, Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models, Math. Biosci., 200 (2006), 1-27.       
11 R. Culshaw, S. Ruan and R. Spiteri, Optimal HIV treatment by maximising immune response, J. Math. Biol., 48 (2004), 545-562.       
12 R. J. De Boer and A. S. Perelson, Towards a general function describing T cell proliferation, J. Theoret. Biol., 175 (1995), 567-576.
13 R. J. De Boer and A. S. Perelson, Target cell limited and immune control models of HIV infection: A comparison, J. Theoret. Biol., 190 (1998), 201-214.
14 P. Georgescu and Y. Hsieh, Global stability for a virus dynamics model with nonlinear incidence of infection and removal, SIAM J. Appl. Math., 67 (2006), 337-353.       
15 T. Kajiwara and T. Sasaki, A note on the stability analysis of pathogen-immune interaction dynamics, Discrete Continuous Dynam. Systems-B, 4 (2004), 615-622.       
16 Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics," Academic Press, San Diego, 1993.       
17 Y. Li, R. Xu, Z. Li and S. Mao, Global dynamics of a delayed HIV-1 infection model with CTL immune response, Discrete Dynamics in Nature and Society, 2011 (2011), Art. ID 673843, 13 pp.       
18 S. Liu and L. Wang, Global stability of an HIV-1 model with dstributed intracellular delays and a combination therapy, Math. Biosci. and Eng., 7 (2010), 675-685.       
19 W. Liu, Nonlinear oscillation in models of immune response to persistent viruses, Theor. Popul. Biol., 52 (1997), 224-230.
20 C. Lv and Z. Yuan, Stability analysis of delay differential equation models of HIV-1 therapy for fighting a virus with another virus, J. Math. Anal. Appl., 352 (2009), 672-683.       
21 J. Mittler, B. Sulzer, A. Neumann and A. Perelson, Influence of delayed viral production on viral dynamics in HIV-1 infected patients, Math. Biosci., 152 (1998), 143-163.
22 Y. Nakata, Global dynamics of a cell mediated immunity in viral infection models with distributed delays, J. Math. Anal. Appl., 375 (2011), 14-27.       
23 P. Nelson, J. Murray and A. S. Perelson, A model of HIV-1 pathogenesis that includes an intracellular delay, Math. Biosci., 163 (2000), 201-215.       
24 P. Nelson and A. S. Perelson, Mathematica analysis of delay differential equation models of HIV-1 infection, Math. Biosci., 179 (2002), 73-94.       
25 M. Nowak and C. Bangham, Population dynamics of immune response to persistent viruses, Science, 272 (1996), 74-79.
26 M. A. Nowak, S. Bonhoeffer, G. M. Shaw and R. M. May, Anti-viral drug treatment: Dynamics of resistance in free virus and infected cell populations, J. Theor. Biol., 184 (1997), 203-217.
27 K. A. Pawelek, S. Liu, F. Pahlevani and L. Rong, A model of HIV-1 infection with two time delays: Mathematical analysis and comparison with patient data, Math. Biosci., 235 (2012), 98-109.       
28 A. S. Perelson and P. Nelson, Mathematical models of HIV dynamics in vivo, SIAM Rev., 41 (1999), 3-44.       
29 A. S. Perelson, A. Neumann, M. Markowitz, J. Leonard and D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time, Science, 271 (1996), 1582-1586.
30 A. N. Phillips, Reduction of HIV concentration during acute infection: Independence from a specific immune response, Science, 271 (1996), 497-499.
31 J. Wang, G. Huang and Y. Takeuchi, Global asymptotic stability for HIV-1 dynamics with two distributed delays, Mathematical Medicine and Biology, IMA.
32 K. Wang, W. Wang and X. Liu, Global Stability in a viral infection model with lytic and nonlytic immune response, Comput. Math. Appl., 51 (2006), 1593-1610.       
33 K. Wang, W. Wang, H. Pang and X. Liu, Complex dynamic behavior in a viral model with delayed immune response, Physica D, 226 (2007), 197-208.       
34 R. Xu, Global dynamics of an HIV-1 infection model with distributed intracellular delays, Comput. Math. Appl., 61 (2011), 2799-2805.       
35 R. Xu, Global stability of an HIV-1 infection model with saturation infection and intracellular delay, J. Math. Anal. Appl., 375 (2011), 75-81.       
36 H. Zhu and X. Zou, Impact of delays in cell infection and virus production on HIV-1 dynamics, Mathematical Medicine and Biology, IMA, 25 (2008), 99-112.
37 H. Zhu and X. Zou, Dynamics of a HIV-1 infection model with cell-mediated immune response and intracellular delay, Discrete Continuous Dynam. Systems-B, 12 (2009), 511-524.       
38 H. Zhu, Y. Luo and M. Chen, Stability and Hopf bifurcation of a HIV infection model with CTL-response delay, Comput. Math. Appl., 62 (2011), 3091-3102.       

Go to top