`a`
Mathematical Biosciences and Engineering (MBE)
 

Competition of motile and immotile bacterial strains in a petri dish
Pages: 399 - 424, Issue 2, April 2013

doi:10.3934/mbe.2013.10.399      Abstract        References        Full text (715.2K)                  Related Articles

Silogini Thanarajah - Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada (email)
Hao Wang - Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada (email)

1 S.Asei, B. Byers, A. Eng, N. James and J. Leto, "Bacterial Chemostat Model," 2007.
2 P. K. Brazhnik and J. J Tyson, On traveling wave solutions of fisher's equation in two spatial dimensions, SIAM. J. Appl. Math., 60 (2000), 371-391.       
3 I. Chang, E. S. Gilbert, N. Eliashberg and J. D. Keasling, A three-dimensional stochastic simulation of biofilm growth and transport-related factors that affect structure, Micro. Bio., 149 (2003), 2859-2871.
4 M. Fontes and D. Kaiser, Myxococcus cells respond to elastic forces in their substances, Proceedings of the National Academy of Sciences of the United States of America, 96 (1999), 8052-8057.
5 H. Fujikawa and M. Matsushita, Fractal growth of Bacillus subtilis on agar plates, J. Phys. Soc. Jpn., 58 (1989), 3875-3878.
6 H. Fujikawa and M. Matsushita, Bacterial fractal growth in the concentration field of nutrient, J. Phys. Soc. Jpn., 60 (1991), 88-94.
7 M. E. Hibbing, C. Fuqua, M. R. Parsek and B. S. Peterson, Bacterial competition: Surviving and thriving in the microbial jungle, Nature Reviews Microbiology, 8 (2010), 15-25.
8 D. P. Hzder, R. Hemmerbach and M. Lebert, Gravity and the bacterial unicellular organisms, Developmental and Cell Biology Series, 40 (2005).
9 C. R. Kennedy and R. Aris, Traveling waves in a simple population model involving growth and death, Bull. of Math. Biol., 42 (1980), 397-429.       
10 E. Keller, Mathematical aspects of bacterial chemotaxis, Antibiotics and Chemotherapy, 19 (1974), 79-93.
11 F. X. Kelly, K. J. Dapsis and D. Lauffenburger, Effect of bacterial chemotaxis on dynamics of microbial competition, Micro. Biol., 16 (1988), 115-131.
12 E. Khain, L. M. Sander and A. M. Stein, A model for glioma growth, Research Article, 11 (2005), 53-57.       
13 S. M. Krone, R. Lu, R. Fox, H. Suzuki and E. M. Top, Modelling the spatial dynamics of plasmid transfer and persistence, Micro. Biol., 153 (2007), 2803-2816.
14 D. Lauffenburger, R. Aris and K. H. Keller, Effects of random motility on growth of bacterial populations, Micro. Ecol., 7 (1981), 207-227.
15 D. Lauffenburger, R. Aris and K. H. Keller, Effects of cell motility and chemotaxis on growth of bacterial populations, Biophys. J., 40 (1982), 209-219.
16 D. Lauffenburger and P. Calcagno, Competition between two microbial populations in a nonmixed environment: Effect of cell random motility, Bio. Tech. and Bio. Eng., xxv (1983), 2103-2125.
17 M. Matsushita, J. Wakitaa, H. Itoha, K. Watanabea, T. Araia, T. Matsuyamab, H. Sakaguchic and M. Mimurad, Formation of colony patterns by a bacterial cell population, Physica A: Statistical Mechanics and Its Applications, 274 (1999), 190-199.
18 M. Matsushita, F. Hiramatsu, N. Kobayashi, T. Ozawa, Y. Yamazaki and T. Matsuyama, Colony formation in bacteria: Experiments and modeling, Biofilms, 1 (2004), 305-317.
19 M. Mimura, H. Sakaguchi and M. Matsushita, Reaction-diffusion modeling of bacterial colony patterns, Physica. A. Stat. Mech. Appl., 282 (2000), 283-303.
20 J. D. Murray, "Murray JD," $1^{st}$, $3^{rd}$ edition, USA, 2002.
21 K. Nowaczyk, A. Juszczak A and F. Domka, Microbiological oxidation of the waste ferrous sulphate, Polish Journal of Environmental Studies, 6 (1999), 409-416.
22 C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), 311-338.       
23 P. T. Saunders and M. J. Bazin, On the stability of food chains, J. Theor. Biol., 52 (1975), 121-142.       
24 R. N. D. Shepard and D. Y. Sumner, Undirected motility of filamentous cyanobacteria produces reticulate mats, Geobiology, 8 (2010), 179-190.
25 J. M. Skerker and H. C. Berger, Direct observation of extension and retraction of type IV pili, PNAS, 98 (2001), 6901-6904.
26 L. Simonsen, Dynamics of plasmid transfer on surfaces, J. General Microbiology, 136 (1990), 1001-1007.
27 R. Tokita, T. Katoh, Y. Maeda, J. I. Wakita, M. Sano, T. Matsuyama and M. Matsushita, Pattern formation of bacterial colonies by Escherichia coli, J. Phys. Soc. Jpn., 78 (2009), 074005 (6 pages).
28 Y. Wei, X. Wang, J. Liu, L. Nememan, A. H. Singh, H. Howie and B. R. Levin, The populatiion and evolutionary of bacteria in physically structured habitats: The adaptive virtues of motility, PNAS, 108 (2011), 4047-4052.
29 J. T. Wimpenny, "CRC Handbook of Laboratory Model Systems for Microbial Ecosystems," 2 1998.
30 P. Youderian, Bacterial motility: Secretory secrets of gliding bacteria, Current Biology, 8 (1998), 408-411.
31 A. Ishihara, J. E. Segall, S. M. Block and H. L Berg, Coordination of flagella on filgmentous cells of Escherichia Coli, J. Bacteriology, 155 (1983), 228-237.
32 B. L. Taylor and D. E. Koshlard, Reversal of flafella rotation in Monotrichous and Peritrichous bacteria: Generation of changes in direction, J. Bacteriology, 119 (1974), 640-642.

Go to top