`a`
Journal of Modern Dynamics (JMD)
 

A dynamical approach to Maass cusp forms
Pages: 563 - 596, Issue 4, October 2012

doi:10.3934/jmd.2012.6.563      Abstract        References        Full text (778.9K)           Related Articles

Anke D. Pohl - Mathematisches Institut, Georg-August-Universität Göttingen, Bunsenstr. 3–5, 37073 Göttingen, Germany (email)

1 E. Artin, Ein mechanisches system mit quasiergodischen bahnen, Abh. Math. Sem. Univ. Hamburg, 3 (1924), 170-175.
2 R. Bruggeman, Automorphic forms, hyperfunction cohomology, and period functions, J. Reine Angew. Math., 492 (1997), 1-39.       
3 R. Bruggeman, J. Lewis and D. Zagier, Period functions for Maass wave forms. II: Cohomology, preprint, 2012. Available from: http://www.staff.science.uu.nl/~brugg103/algemeen/prpr.html.
4 R. W. Bruggeman and T. Mühlenbruch, Eigenfunctions of transfer operators and cohomology, J. Number Theory, 129 (2009), 158-181.       
5 C.-H. Chang and D. Mayer, The period function of the nonholomorphic Eisenstein series for $PSL(2,\mathbf Z)$, Math. Phys. Electron. J., 4 (1998), Paper 6, 8 pp.       
6 _____, The transfer operator approach to Selberg's zeta function and modular and Maass wave forms for $PSL(2,\mathbf Z)$, in "Emerging Applications of Number Theory" (Minneapolis, MN, 1996), IMA Vol. Math. Appl., 109, Springer, New York, (1999), 73-141.
7 _____, Eigenfunctions of the transfer operators and the period functions for modular groups, in "Dynamical, Spectral, and Arithmetic Zeta Functions" (San Antonio, {TX}, 1999), Contemp. Math., Amer. Math. Soc., 290, Providence, RI, (2001), 1-40.
8 _____, An extension of the thermodynamic formalism approach to Selberg's zeta function for general modular groups, in "Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems," Springer, Berlin, (2001), 523-562.
9 A. Deitmar and J. Hilgert, A Lewis correspondence for submodular groups, Forum Math., 19 (2007), 1075-1099.       
10 I. Efrat, Dynamics of the continued fraction map and the spectral theory of $SL(2,\mathbf Z)$, Invent. Math., 114 (1993), 207-218.       
11 M. Fraczek, D. Mayer and T. Mühlenbruch, A realization of the Hecke algebra on the space of period functions for $\Gamma_0(n)$, J. Reine Angew. Math., 603 (2007), 133-163.
12 D. Fried, Symbolic dynamics for triangle groups, Invent. Math., 125 (1996), 487-521.       
13 J. Hilgert, D. Mayer and H. Movasati, Transfer operators for $\Gamma_0(n)$ and the Hecke operators for the period functions of $PSL(2,\mathbf Z)$, Math. Proc. Cambridge Philos. Soc., 139 (2005), 81-116.       
14 J. Hilgert and A. Pohl, Symbolic dynamics for the geodesic flow on locally symmetric orbifolds of rank one, in "Infinite Dimensional Harmonic Analysis IV," World Scientific Publ., Hackensack, NJ, (2009), 97-111.       
15 J. Lewis, Spaces of holomorphic functions equivalent to the even Maass cusp forms, Invent. Math., 127 (1997), 271-306.       
16 J. Lewis and D. Zagier, Period functions for Maass wave forms. I, Ann. of Math. (2), 153 (2001), 191-258.       
17 B. Maskit, On Poincaré's theorem for fundamental polygons, Advances in Math., 7 (1971), 219-230.       
18 D. Mayer, On a $\zeta $ function related to the continued fraction transformation, Bull. Soc. Math. France, 104 (1976), 195-203.       
19 _____, On the thermodynamic formalism for the Gauss map, Comm. Math. Phys., 130 (1990), 311-333.
20 _____, The thermodynamic formalism approach to Selberg's zeta function for $PSL(2,\mathbf Z)$, Bull. Amer. Math. Soc. (N.S.), 25 (1991), 55-60.
21 D. Mayer, T. Mühlenbruch and F. Strömberg, The transfer operator for the Hecke triangle groups, Discrete Contin. Dyn. Syst., 32 (2012), 2453-2484.
22 D. Mayer and F. Strömberg, Symbolic dynamics for the geodesic flow on Hecke surfaces, J. Mod. Dyn., 2 (2008), 581-627.       
23 M. Möller and A. Pohl, Period functions for Hecke triangle groups, and the Selberg zeta function as a Fredholm determinant, Ergodic Theory and Dynamical Systems, to appear, published as First View, arXiv:1103.5235, (2011).
24 T. Morita, Markov systems and transfer operators associated with cofinite Fuchsian groups, Ergodic Theory Dynam. Systems, 17 (1997), 1147-1181.       
25 R. S. Phillips and P. Sarnak, On cusp forms for co-finite subgroups of $PSL(2,\mathbf R)$, Invent. Math., 80 (1985), 339-364.       
26 _____, The Weyl theorem and the deformation of discrete groups, Comm. Pure Appl. Math., 38 (1985), 853-866.
27 A. Pohl, Odd and even Maass cusp forms for Hecke triangle groups, and the billiard flow, in preparation.
28 _____, Symbolic dynamics for the geodesic flow on two-dimensional hyperbolic good orbifolds, arXiv:1008.0367, 2010.
29 _____, Period functions for Maass cusp forms for $\Gamma_0(p)$: A transfer operator approach, International Mathematics Research Notices, (2012).
30 M. Pollicott, Some applications of thermodynamic formalism to manifolds with constant negative curvature, Adv. in Math., 85 (1991), 161-192.       
31 D. Ruelle, "Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval," CRM Monograph Series, 4, American Mathematical Society, Providence, RI, 1994.       
32 _____, Dynamical zeta functions and transfer operators, Notices Amer. Math. Soc., 49 (2002), 887-895.       
33 C. Series, The modular surface and continued fractions, J. London Math. Soc. (2), 31 (1985), 69-80.       

Go to top