Mathematical Biosciences and Engineering (MBE)

Mathematical analysis and simulations involving chemotherapy and surgery on large human tumours under a suitable cell-kill functional response
Pages: 221 - 234, Issue 1, February 2013

doi:10.3934/mbe.2013.10.221      Abstract        References        Full text (526.8K)           Related Articles

Diego Samuel Rodrigues - Universidade de São Paulo, Depto de Matemática Aplicada e Estatística, ICMC, USP, 13560-970, São Carlos, Brazil (email)
Paulo Fernando de Arruda Mancera - Universidade Estadual Paulista, Depto de Bioestatística, IBB, UNESP, 18618-970, Botucatu, Brazil (email)

1 R. E. Bellman. "Mathematical Methods in Medicine,'' World Scientific Publishing Co. Inc., River Edge, 1983.       
2 T. Browder, C. E. Butterfield, B. M. Kraling, B. Shi, B. Marshall, M. S. O'Reilly and J. Folkman, Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer, Cancer Res., 60 (2000), 1878-1886.
3 R. N. Buick, Cellular basis of chemotherapy, in "Cancer Chemotherapy Handbook'' (Ed. R. T. Dorr and D. D. V. Hoff), Appleton & Lange, (1994), p.9.
4 L. G. de Pillis and A. E. Radunskaya, A mathematical tumor model model with immune resistance and drug therapy: An optimal control approach, J. Theor. Med., 3 (2001), 79-100.
5 L. G. de Pillis, W. Gu, K. R. Fister, T. Head, K. Maples, A. Murugan, T. Neal and K. Yoshida, Chemotherapy for tumors: Analysis of the dynamics and a study of quadratic and linear optimal controls, Math. Biosc., 209 (2007), 292-315.       
6 A. D'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, An optimal delivery of combination therapy for tumors, Math. Biosc., 222 (2009), 13-26.       
7 R. T. Dorr and D. D. Von Hoff, "Cancer Chemotherapy Handbook,'' McGraw-Hill, 1994.
8 FEC100 chemotherapy for breast cancer (Written by Jeremy Braybrooke). Document number: ASWCS09 BR006 [internet] accessed 27/07/2011 available from http://www.avon.nhs.uk/aswcs-chemo/STCP/index.htm.
9 {N. Ferrara and H. P. Gerber}, The role of vascular endothelial growth factor in angiogenesis, Acta Haematol., 106 (2001), 148-156.
10 K. R. Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies, SIAM J. Appl. Math., 63 (2003), 1954-1971.       
11 R. A. Gatenby, Application of competition theory to tumour growth: Implications for tumour biology and treatment, Eur. J. Cancer, 32A (1996), 722-726.
12 R. S. Kerbel, Tumour angiogenesis: Past, present and the near future, Carcinogenesis, 21 (2000), 505-515.
13 M. Kohandel, S. Sivaloganathan and A. Oza, Mathematical modeling of ovarian cancer treatments: Sequencing of surgery and chemotherapy, J. Theor. Biol., 242 (2006), 62-68.       
14 L. G. Marcu and E. Bezak, Neoadjuvant cisplatin for head and neck cancer: simulation of a novel schedule for improved therapeutic ratio, J. Theor. Biol., 297 (2012), 41-47.
15 R. B. Martin, M. E. Fisher, R. F. Minchin and K. L. Teo, Low-intensity combination chemotherapy maximizes host survival time for tumors containing drug-resistant cells, Math. Biosc., 110 (1992), 221-252.
16 R. B. Martin and K. L. Teo, "Optimal Control of Drug Administration in Cancer Chemotherapy,'' World Scientific, 1994.
17 R. B. Martin, Optimal control drug scheduling of cancer chemotherapy, Automatica 28 (1992), 113-1123.       
18 MeadJohnson Oncology Products [internet], http://patient.cancerconsultants.com/druginserts/Cyclophosphamide.pdf. accessed 29/02/2012.
19 R. D. Mosteller, Simplified calculation of body surface area, N. Engl. J. Med., (1987), 1098.
20 S. Mukherjee, "The Emperor of All Maladies: A Biography of Cancer,'' Scribner, 2010.
21 F. Nani and H. I. Freedman, A mathematical model of cancer treatment by immunotherapy, Math. Biosc., 163 (2000), 159-199.       
22 L. Norton and R. Simon, The Norton-Simon hypothesis revisited, Cancer Treat. Rep., 70 (1986), 163-169.
23 S. T. R. Pinho, H. I. Freedman and F. K. Nani, A chemotherapy model for the treatment of cancer with metastasis, Math. Comp. Model., 36 (2002), 773-803.       
24 S. T. R. Pinho, F. S. Bacelar, R. F. S. Andrade and H. I. Freedman, A mathematical model for the effect of anti-angiogenic therapy in the treatment of cancer tumours by chemotherapy, Nonlin. Anal.: Real World Appl., 14 (2013), 815-828.       
25 D. S. Rodrigues, S. T. R. Pinho and P. F. A. Mancera, Um modelo matemático em quimio-terapia, TEMA, 13 (2012), 1-12 (in portuguese).
26 D. S. Rodrigues, P. F. A. Mancera and S. T. R. Pinho, Accessing the effect of metronomic chemotherapy through a simple mathematical model, 2012, preprint.
27 F. M. Schaebel, Concepts for systematic treatment of micrometastases, Cancer, 35 (1975), 15-24.
28 H. E. Skipper, F. M. Schaebel-Jr. and W. S. Wilcox, Experimental evaluation of potential anticancer agents XIII: on the criteria and kinetics associated with curability of experimental leukemia, Cancer Chemother. Rep., 35 (1964), 1-111.
29 J. S. Spratt, J. S. Meyer and J. A. Spratt, Rates of growth of human neoplasms: part II, J. Surg. Oncol., 61 (1996), 68-73.
30 G. S. Stamatakos, E. A. Kolokotroni, D. D. Dionysiou, E. C. Georgiadi and C. Desmedt, An advanced discrete state-discrete event multiscale simulation model of the response of a solid tumour to chemotherapy: mimicking a clinical study, J. Theor. Biol., 266 (2010), 124-139.
31 V. G. Vaidya and F. J. Alexandro Jr., Evaluation of some mathematical models for tumor growth, Int. J. Biom. Comput., 13 (1982), 19-35.       
32 World Health Organization, http://www.who.int/cancer/en/ accessed 02/03/2012.
33 R. A. Weinberg, "The Biology of Cancer,'' Garland Science, 2008.

Go to top