A therapy inactivating the tumor angiogenic factors
Pages: 185  198,
Issue 1,
February
2013
doi:10.3934/mbe.2013.10.185 Abstract
References
Full text (362.8K)
Related Articles
Cristian MoralesRodrigo  Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Calle Tara s/n, 41012Seville, Spain (email)
1 
H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in "Function Spaces, Differential Operators and Nonlinear Analysis" (editors, H. J. Schmeisser and H. Triebel), Teubner, Stuttgart, Leipzig, (1993), 9126. 

2 
H. Amann and J. LópezGómez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems, J. Differential Equations, 146 (1998), 336374. 

3 
A. R. A. Anderson and M. A. J. Chaplain, Continuous and Discrete Mathematical Models of Tumorinduced Angiogenesis, Bull. Math. Biol., 60 (1998), 857899. 

4 
M. A. J. Chaplain and A. M. Stuart, A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor, IMA J. Math. Appl. Med. Biol., 10 (1993), 149168. 

5 
M. A. J. Chaplain, Avascular growth, angiogenesis and vascular growth in solid tumours: the mathematical modelling of the stages of tumor development, Math. Comput. Modelling, 23 (1996), 4787. 

6 
T. Cieślak and C. MoralesRodrigo, Longtime behaviour of an angiogenesis model with flux at the tumor boundary, Preprint, arXiv:1202.4695. 

7 
M. Delgado, I. Gayte, C. MoralesRodrigo and A. Suárez, An angiogenesis model with nonlinear chemotactic response and flux at the tumor boundary, Nonlinear Anal., 72 (2010), 330347. 

8 
M. Delgado, C. MoralesRodrigo and A. Suárez, Antiangiogenic therapy based on the binding receptors, Discrete Contin. Dyn. Syst. Ser A, 32 (2012), 38713894. 

9 
M. Delgado, C. MoralesRodrigo, A. Suárez and J. I. Tello, On a parabolicelliptic chemotactic model with coupled boundary conditions, Nonlinear Analysis RWA, 11 (2010), 38843902. 

10 
M. Delgado and A. Suárez, Study of an elliptic system arising from angiogenesis with chemotaxis and flux at the boundary, J. Differential Equations, 244 (2008), 31193150. 

11 
M. A. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal., 33 (2002), 13301350. 

12 
J. GarcíaMelián, J. D. Rossi and J. Sabina, Existence and uniqueness of positive solutions to elliptic problems with sublinear mixed boundary conditions, Comm. Comtemporary Math., 11 (2009), 585613. 

13 
D. Henry, "Geometric Theory of Semilinear Parabolic Equations," Lecture Notes Math., 840, Springer 1981. 

14 
H. A. Levine, B. D. Sleeman and M. NilsenHamilton, Mathematical modeling of the onset of capillary formation initiating angiogenesis, J. Math. Biol., 42 (2001), 195238. 

15 
D. Manoussaki, A mechanochemical model of angiogenesis and vasculogenesis, ESAIM Math. Modelling Num. Anal., 37 (2003), 581599. 

16 
N. V. Mantzaris, S. Webb and H. G. Othmer, Mathematical modeling of tumor induced angiogenesis, J. Math. Biol., 49 (2004), 111187. 

17 
M. Owen, T. Alarcón, P. K. Maini and H. M. Byrne, Angiogenesis and vascular remodelling in normal and cancerous tissues, J. Math. Biol., 58 (2009), 689721. 

18 
R. M. Sutherland, Cell and environment interactions in tumor microregions: The multicell spheroid model, Science, 240 (1988), 177184. 

19 
M. Winkler, Aggregation vs global diffusive behavior in the higherdimensional KellerSegel model, J. Differential Equations, 248 (2010), 28892905. 

Go to top
