`a`
Numerical Algebra, Control and Optimization (NACO)
 

On product-type generalized block AOR method for augmented linear systems
Pages: 797 - 809, Issue 4, December 2012

doi:10.3934/naco.2012.2.797      Abstract        References        Full text (187.3K)           Related Articles

Fang Chen - Department of Mathematical Sciences, Xi'an Jiaotong University, Xi'an 710049, China (email)
Ning Gao - Department of Mathematical Sciences, Xi'an Jiaotong University, Xi'an 710049, China (email)
Yao- Lin Jiang - Department of Mathematical Sciences, Xi'an Jiaotong University, Xi'an 710049, China (email)

1 K. Arrow, L. Hurwicz and H. Uzawa, "Studies in Nonlinear Programming," Stanford University Press, Stanford, 1958.
2 Z. Z. Bai, Structured preconditioners for nonsingular matrices of block two-by-two structures, Math. Comput., 75 (2006), 791-815.       
3 Z. Z. Bai and G. H. Golub, Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems, IMA J. Numer. Anal., 27 (2007), 1-23.       
4 Z. Z. Bai, G. H. Golub and M. K. Ng, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24 (2003), 603-626.       
5 Z. Z. Bai, G. H. Golub and J. Y. Pan, Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math., 98 (2004), 1-32.       
6 Z. Z. Bai and G. Q. Li, Restrictively preconditioned conjugate gradient methods for systems of linear equations, IMA J. Numer. Anal., 23 (2003), 561-580.       
7 Z. Z. Bai, B. N. Parlett and Z. Q. Wang, On generalized successive overrelaxation methods for augmented linear systems, Numer. Math., 102 (2005), 1-38.       
8 Z. Z. Bai and Z. Q. Wang, On parameterized inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl., 428 (2008), 2900-2932.       
9 Z. Z. Bai, L. Wang and J. Y. Yuan, Weak-convergence theory of quasi-nonnegative splittings for singular matrices, Linear Algebra Appl., 47 (2003), 75-89.       
10 M. Benzi and G. H. Golub, A preconditioner for generalized saddle point problems, SIAM J. Matrix Anal. Appl., 26 (2004), 20-41.       
11 J. H. Bramble, J. E. Pasciak and A. T. Vassilev, Analysis of the inexact Uzawa algorithm for saddle point problems, SIAM J. Numer. Anal., 34 (1997), 1072-1092.       
12 H. C. Elman and G. H. Golub, Inexact and preconditioned Uzawa algorithms for saddle point problems, SIAM J. Numer. Anal., 31 (1994), 1645-1661.       
13 G. H. Golub, X. Wu and J.-Y. Yuan, SOR-like methods for augmented systems, BIT, 41 (2001), 71-85.       
14 C.-J. Li, Z. Li, D. J. Evans and T. Zhang, A note on an SOR-like method for augmented systems, IMA J. Numer. Anal., 23 (2003), 581-592.       
15 Y.-L. Jiang, R. M. M. Chen and O. Wing, Improving convergence performance of relaxation-based transient analysis by matrix splitting in circuit simulation, IEEE Trans. Circuits Systems: Part I, 48 (2001), 769-780.
16 Y.-L. Jiang, Y.-W. Liu, K.-K. Mei and R. M. M. Chen, A new iterative technique for large and dense linear systems from the MEI method in electromagnetics, Appl. Math. Comput., 139 (2003), 157-163.       
17 D. M. Young, "Iterative Solutions of Large Linear Systmes," Academic Press, New York, 1971.
18 J.-F. Yin and Z.-Z. Bai, The restrictively preconditioned conjugate gradient methods on normal residual for block two-by-two linear systems, J. Comput. Math., 26 (2008), 240-249.       
19 G.-F. Zhang and Q.-H. Lu, On generalized symmetric SOR method for augmented systems, J. Comput. Appl. Math., 219 (2008), 51-58.       
20 B. Zheng, Z.-Z. Bai and X. Yang, On semi-convergence of parameterized Uzawa methods for singular saddle point problems, Linear Algebra Appl., 431 (2009), 808-817.       
21 B. Zheng, K. Wang and Y.-J. Wu, SSOR-like methods for saddle point problems, Intern. J. Comput. Math., 86 (2009), 1405-1423.       

Go to top