Mathematical Biosciences and Engineering (MBE)

Dynamics of stochastic mutation to immunodominance
Pages: 937 - 952, Issue 4, October 2012

doi:10.3934/mbe.2012.9.937      Abstract        References        Full text (501.8K)           Related Articles

Yu Wu - Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, United States (email)
Xiaopeng Zhao - Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, United States (email)
Mingjun Zhang - Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, United States (email)

1 M. A. Nowak, R. M. May and K. Sigmund, Immune responses against multiple epitopes, J. Theor. Biol., 175 (1995), 325-353.
2 M. A. Nowak, Immune responses against multiple epitopes: a theory for immunodominance and antigenic variation, Semin. Virol., 7 (1996), 83-92.
3 D. Wodarz, "Killer Cell Dynamics: Mathematical and Computational Approaches to Immunology," Springer, New York, USA, 2007.       
4 L. Adorini, E. Appella, G. Doria and Z. A. Nagy, Mechanisms influencing the immunodominance of T cell determinants, J. Exp. Med., 168 (1988), 2091-2104.
5 A. J. McMichael and R. E. Phillips, Escape of human immunodeficiency virus from immune control, Annu. Rev. Immunol., 15 (1997), 271-296.
6 P. J. R. Goulder, et al., Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS, Nature Med., 3 (1997), 212-217.
7 P. J. R. Goulder, et al., Patterns of immunodominance in HIV-1-specific cytotoxic T lymphocyte responses in two human histocompatibility leukocyte antigens (HLA)-identical siblings with HLA-A*0201 are influenced by epitope mutation, J. Exp. Med., 185 (1997), 1423-1433.
8 J. W. Yewdell and J. R. Bennink, Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses, Annu. Rev. Immunol., 17 (1999), 51-88.
9 S. Gupta and R. M. Anderson, Population structure of pathogens: the role of immune selection, Parasitology Today, 15 (1999), 497-501.
10 C. C. Bergmann, J. D. Altman, D. Hinton and S. A. Stohlman, Inverted immunodominance and impaired cytolytic function of CD8+ T cells during viral persistence in the central nervous system, J. Immunol. 163 (1999), 3379-3387.
11 W. S. Chen, L. C. Antón, J. R. Bennink and J. W. Yewdell, Dissecting the multifactorial causes of immunodominance in class I-restricted T cell responses to viruses, Immunity, 12 (2000), 83-93.
12 X. G. Yu, et al., Consistent patterns in the development and immunodominance of human immunodificiency virus type 1 (HIV-1)-specific CD8+ T-cell responses following acute HIV-1 infection, J. Virol., 76 (2002), 8690-8701.
13 M. A. Brehm, A. K. Pinto, K. A. Daniels, J. P. Schneck, R. M. Welsh and L. K. Selin, T cell immunodominance and maintenance of memory regulated by unexpectedly cross-reactive pathogens, Nature Immunol., 3 (2002), 627-634.
14 U. Karrer, et al., Memory inflation: continuous accumulation of antiviral CD8+ T cells over time, J. Immunol., 170 (2003), 2022-2029.
15 E. J. Wherry, J. N. Blattman, K. Murali-Krishna, R. van der Most and R. Ahmed, Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment, J. Virol., 77 (2003), 4911-4927.
16 P. K. C. Goon, et al., Human T cell lymphotropic virus (HTLV) type-1-specific CD8+ T cells: frequency and immunodominance hierarchy, J. Infect. Dis., 189 (2004), 2294-2298.
17 R. Draenert, et al., Constraints on HIV-1 evolution and immunodominance revealed in monozygotic adult twins infected with the same virus, J. Exp. Med., 203 (2006), 529-539.
18 M. A. Nowak, R. M. Anderson, A. R. McLean, T. F. W. Wolfs, J. Goudsmit and R. M. May, Antigenic diversity thresholds and the development of AIDS, Science, 254 (1991), 963-969.
19 M. A. Nowak, et al., Antigenic oscillations and shifting immunodominance in HIV-1 infections, Nature, 375 (1995), 606-611.
20 D. Wodarz and M. A. Nowak, CD8 memory, immunodominance, and antigenic escape, Eur. J. Immunol., 30 (2000), 2704-2712.
21 M. A. Nowak and R. M. May, "Virus Dynamics: Mathematical Principles of Immunology and Virology,'' Oxford University Press, New York, USA, 2000.       
22 C. L. Althaus and R. J. De Boer, Dynamics of immune escape during HIV/SIV infection, PLOS Comput. Biol., 4 (2008), e1000103.       
23 A. Handel and R. Antia, A simple methematical model helps to explain the immunodominance of CD8 T cells in influenza a virus infections, J. Virol., 82 (2008), 7768-7772.
24 M. A. Nowak, R. M. May and R. M. Anderson, The evolutionary dynamics of HIV-1 quasispecies and the development of immunodeficiency disease, AIDS, 4 (1990), 1095-1103.
25 M. A. Nowak and R. M. May, Coexistence and competition in HIV infections, J. Theor. Biol., 159 (1992), 329-342.
26 M. A. Nowak and R. M. May, AIDS pathogenesis: mathematical models of HIV and SIV infections, AIDS 7, Suppl., 1 (1993), S3-S18.
27 R. M. Anderson, Mathematical studies of parasitic infection and immunity, Science, 264 (1994), 1884-1886.
28 Y. K. Lin and G. Q. Cai, "Probabilistic Structural Dynamics: Advanced Theory and Applications,'' McGraw-Hill, New York, 1995.
29 W. Q. Zhu, Z. L. Huang, J. M. Ko and Y. Q. Ni, Optimal feedback control of strongly non-linear systems excited by bounded noise, J. Sound Vib., 274 (2004), 701-724.       
30 Z. L. Huang, W. Q. Zhu, Y. Q. Ni and J. M. Ko, Stochastic averaging of strongly non-linear oscillators under bounded noise excitation, J. Sound Vib., 254 (2002), 245-267.       

Go to top