`a`
Mathematical Biosciences and Engineering (MBE)
 

Evolution of uncontrolled proliferation and the angiogenic switch in cancer
Pages: 843 - 876, Issue 4, October 2012

doi:10.3934/mbe.2012.9.843      Abstract        References        Full text (1084.3K)           Related Articles

John D. Nagy - Department of Life Sciences, Scottsdale Community College, 9000 E. Chaparral Rd., Scottsdale, AZ 85256, United States (email)
Dieter Armbruster - School of Mathematical and Statistical Sciences, Arizona State University, PO Box 874501, Tempe AZ, 85287-1804, United States (email)

1 B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts and J. D. Watson, "Molecular Biology of the Cell," $3^{rd}$ edition, Garland, New York, 1994.
2 F. I. Ataullakhanov, S. V. Komarova, M. V. Martynov and V. M. Vitvitsky, A possible role of adenylate metabolism in human erythrocytes: 2. adenylate metabolism is able to improve the erythrocyte volume stabilization, J. Theor. Biol., 183 (1996), 307-316.
3 F. I. Ataullakhanov, S. V. Komarova and V. M. Vitvitsky, A possible role of adenylate metabolism in human erythrocytes: simple mathematical model, J. Theor. Biol., 179 (1996), 75-86.
4 F. I. Ataullakhanov and V. M. Vitvitsky, What determines the intracellular ATP concentration?, Biosci. Rep., 22 (2002), 501-511.
5 F. I. Ataullakhanov, V. M. Vitvitsky, A. M. Zhabotinsky, A. V. Pichugin, O. V. Platonova, B. N. Kholodenko and L. I. Ehrlich, The regulation of glycolysis in human erythrocytes: the dependence of the glycolytic flux on the ATP concentration, Eur. J. Biochem., 115 (1981), 359-365.
6 D. E. Atkinson, "Cellular Energy Metabolism and Its Regulation," Academic Press, New York, 1977.
7 L. E. Benjamin, I. Hemo and E. Keshet, A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF, Development, 125 (1998), 1591-1598.
8 T. Bønsdorff, M. Gautier, W. Farstad, K. Rønningen, F. Lingaas and I. Olsaker, Mapping of the bovine genes of the de novo AMP synthesis pathway, Anim. Genet., 35 (2004), 438-444.
9 J. J. Boza, D. Moënnoz, C. E. Bournot, S. Blum, I. Zbinden, P. A. Finot and O. Ballèvre, Role of glutamine on the de novo purine nucleotide synthesis in Caco-2 cells, Eur. J. Nutr., 39 (2000), 38-46.
10 D. J. Brat and E. G. Van Meir, Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastoma, Lab. Invest., 84 (2004), 397-405.
11 J. P. Collins, "Evolutionary ecology" and the use of natural selection in ecological theory, J. Hist. Biol., 19 (1986), 257-288.
12 J. de Grouchy and C. de Nava, A chromosomal theory of carcinogenesis, Ann. Intern. Med., 69 (1968), 381-391.
13 F. Du, X.-H. Zhu, Y. Zhang, M. Friedman, N. Zhang adn K. Uqurbil and W. Chen, Tightly coupled brain activity and cerebral ATP metabolic rate, Proc. Nat. Acad. Sci. USA, 105 (2008), 6409-6414.
14 I. F. Dunn, O. Heese and P. McL. Black, Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs, J. Neuro-Onco., 50 (2000), 121-137.
15 D. Gammack, H. M. Byrne and C. E. Lewis, Estimating the selective advantage of mutant p53 tumour cells to repeated rounds of hypoxia, Bull. Math. Biol., 63 (2001), 135-166.
16 S. A. H. Geritz, É. Kisdi, G. Meszéna and J. A. J. Metz, Evolutionarily singular stategies and the adaptive growth and branching of the evolutionary tree, Evol. Ecol., 12 (1998), 35-57.
17 A. C. Giese, "Cell Physiology," $5^{th}$ edition, Saunders, Philadelphia, 1973.
18 M. Greaves, Darwinian medicine: A case for cancer, Nature Rev. Cancer, 7 (2007), 213-221.
19 M. Greaves and C. C. Maley, Clonal evolution in cancer, Nature, 481 (2012), 306-313.
20 D. Hanahan and J. Folkman, Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis, Cell, 86 (1996), 353-364.
21 D. Hanahan and R. A. Weinberg, The hallmarks of cancer, Cell, 100 (2000), 57-70.
22 D. Hanahan and R. A. Weinberg, Hallmarks of cancer: The next generation, Cell, 144 (2011), 646-674.
23 D. G. Hardie, D. Carling and M. Carlson, The AMP-activated/SNF1 protein kinase subfamily: Metabolic sensors of the eukaryotic cell?, Ann. Rev. Biochem., 67 (1998), 821-855.
24 T. S. Hauschka, The chromosomes in ontogeny and oncogeny, Cancer Res., 21 (1961), 957-974.
25 J. Holash, P. C. Maisonpierre, D. Compton, P. Boland, C. R. Alexander, D. Zagzag, G. D. Yancopolous and S. J. Weigand, Vessel cooperation, regression and growth in tumors mediated by angiopoietins and VEGF, Science, 221 (1998), 1994-1998.
26 J. Maynard Smith, "Evolution and the Theory of Games," Cambridge University Press, Cambridge, 1982.
27 J. Maynard Smith and G. R. Price, The logic of animal conflict, Nature, 246 (1973), 15-18.
28 A. Joshi and B. O. Palsson, Metabolic dynamics in the human red cell. Parts 1-2, J. Theor. Biol., 141 (1989), 515-545.
29 A. Joshi and B. O. Palsson, Metabolic dynamics in the human red cell. Parts 3-4, J. Theor. Biol., 142 (1990), 41-85.
30 W. G. Kaelin and P. J. Ratcliffe, Oxygen sensiing by metazoans: The central role of the HIF hydroxylase pathway, Mol. Cell, 30 (2008), 393-402.
31 G. Karoubi, D. J. Stewart and D. W. Courtman, A population analysis of VEGF transgene expression and secretion, Biotech. Bioeng., 101 (2008), 1083-1093.
32 B. Kaur, C. Tan, D. J. Brat, D. E. Post and E. G. Van Meir, Gene and hypoxic regulation of angiogenesis in gliomas, J. Neuro-Oncol., 70 (2004), 229-243.
33 D. G. Kilburn, M. D. Lilly and F. C. Webb, The energetics of mammalian cell growth, J. Cell Sci., 4 (1969), 645-654.
34 L. A. Lai, R. Kostadivov, M. T. Barrett, D. A. Peiffer, D. Pokholok, R. Odze, C. A. Sanchez, C. C. Maley, B. J. Reid, K. L. Gunderson and P. S. Rabinovitch, Deletion at fragile sites is a common and early event in Barrett's esophagus, Mol. Cancer Res., 8 (2010), 1084-1094.
35 L. W. Law, Origin of the resistance of leukaemic cells to folic acid antagonists, Nature, 169 (1952), 628-629.
36 A. M. Leroi, V. Koufopanou and A. Burt, Cancer selection, Nature Rev. Cancer, 3 (2003), 226-231.
37 A. Levan and J. J. Biesele, Role of chromosomes in cancerogenesis, as studied in serial tissue culture of mammalian cells, Ann. N. Y. Acad. Sci., 71 (1958), 1022-1053.
38 M. V. Martinov, A. G. Plotnikov, V. M. Vitvitsky and F. I. Ataullakhanov, Deficiencies of glycolytic enzymes as a possible cause of hemolytic anemia, Biochim. Biophys. Acta, 1474 (2000), 75-87.
39 L. M. Merlo, J. W. Pepper, B. J. Reid and C. C. Maley, Cancer as an evolutionary and ecological process, Nature Rev. Cancer, 6 (2006), 924-935.
40 L. M. Merlo, N. A. Shah, X. Li, P. L. Blount, T. L. Vaughan, B. J. Reid and C. C. Maley, A comprehensive survey of clonal diversity measures in Barrett's esophagus as biomarkers of progression to esophageal adenocarcinoma, Cancer Prev. Res., 3 (2010), 1388-1397.
41 J. A. J. Metz, R. Nesbit and S. A. H. Geritz, How should we define 'fitness' for general ecological scenarios?, Trends Ecol. Evol., 7 (1992), 198-202.
42 J. D. Nagy, Competition and natural selection in a mathematical model of cancer, Bull. Math. Biol., 66 (2004), 663-687.       
43 J. D. Nagy, The ecology and evolutionary biology of cancer: A review of mathematical models of necrosis and tumor cell diversity, Math. Biosci. Eng., 2 (2005), 381-418.       
44 J. D. Nagy, E. M. Victor and J. H. Cropper, Why don't all whales have cancer? A novel hypothesis resolving Peto's paradox, Int. Comp. Biol., 47 (2007), 317-328.
45 N. Navin, J. Kendall, J. Troge, P. Andrews, L. Rodgers, J. McIndoo, K. Cook, A. Stapansky, D. Levy, D. Esposito, L. Muthuswamy, A. Krasnitz, W. R. McCombie, J. Hicks and M. Wiglerm, Tumour evolution inferred by single-cell sequencing, Nature, 472 (2011), 90-94.
46 G. Neufeld, T. Cohen, S. Gengrinovitch and Z. Poltorak, Vascular endothelial growth factor and its receptors, FASEB J., 13 (1999), 9-22.
47 P. C. Nowell, The clonal evolution of tumor cell populations, Science, 194 (1976), 23-28.
48 K. Parvinen, Evolutionary suicide, Acta Biotheor., 53 (2005), 241-264.
49 K. Pavlov and C. C. Maley, New models of neoplastic progression in Barrett's esophagus, Biochem. Soc. Trans., 38 (2010), 331-336.
50 C. M. Perrins, Survival of young swifts in relation to brood size, Nature, 201 (1964), 1147-1148.
51 K. H. Plate, G. Breier, H. A. Weich and W. Risau, Vascular endothelial growth factor is a potent tumour angiogenesis factor in human gliomas in vivo, Nature, 359 (1992), 845-848.
52 C. M. Robbins, W. A. Tembe, A. Baker, S. Sinari, T. Y. Moses, S. Beckstrom-Sternberg, J. Beckstrom-Sternberg, M. Barrett, J. Long, A. Chinnaiyan, J. Lowey, E. Suh, J. V. Pearson, D. W. Craig, D. B. Angus, K. J. Pienta and J. D. Carpten, Copy number and targeted mutational analysis reveals novel somatic events in metastatic prostate tumors, Genome Res., 21 (2011), 47-55.
53 Y. Rong, D. L. Durden, E. G. Van Meir and D. J. Brat, 'Pseudopalisading' necrosis in glioblastoma: A familiar morphologic feature that links vascular pathology, hypoxia and angiogenesis, J. Neuropathol. Exp. Neurol., 65 (2006), 529-539.
54 M. Tehrani, T. M. Friedman, J. J. Olson and D. J. Brat, Intravascular thrombosis in central nervous system malignancies: a potential role in astrocytoma progression to glioma, Brain Pathol., 18 (2008), 164-171.
55 P. Vajkoczy, M. Farhadi, A. Gaumann, R. Heidenreich, R. Erber, A. Wunder, J. C. Tonn, M. D. Menger and G. Breier, Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF VEGF receptor-2 and angopietin-2, J. Clin. Invest., 109 (2002), 777-785.
56 G. C. Williams, "Adaptation and Natural Selection: A Critique of Some Current Evolutionary Thought," Princeton U Press, Princeton, 1966.
57 V. C. Wynn-Edwards, Intergroup selection in the evolution of social systems, Nature, 200 (1963), 623-626.

Go to top